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Mixtures of time-series models

Mixture models are powerful in the face of heterogeneous and
complex time-series data

• Higher accuracy of fitting the data
• Better interpretability: reveal cluster structures
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Numerous applications

(Bulteel et al., 2016) Time-series measurements of certain
psychological symptoms for multiple patients → identify subgroups of
patients, provide tailored treatments.

(Hallac et al., 2017) Sensory data of a car under a few driving modes
(e.g. “driving straight”, “slowing down”, “turning”, etc.)

(Brunskill et al., 2009) Sensory data of a robot navigating a complex
environment (e.g. with areas of grass, sand, carpets, rocks, etc.)

......
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Problem formulation

Recap: linear dynamical system (LDS). A d-dimensional
time-series trajectory {xt} generated by an LDS model, i.e. the d× d
state transition matrix A and noise covariance W :

xt+1 = Axt + wt, where E[wt] = 0, cov(wt) = W � 0.

Mixed LDSs. K models {A(k),W (k)}1≤k≤K , M trajectories
{Xm}1≤m≤M , where Xm = {xm,t} is generated by the km-th model:

xm,t+1 = A(km)xm,t + wm,t, cov(wm,t) = W (km)

Note that the labels {km} are unknown!
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Literature: lack of provable guarantees for model estimation

Major challenges:

• Latent variables are not observed;

• Short trajectories might have lengths much smaller than the
model dimension d;

• Temporal dependence inherent to time series (in contrast to
mixed regression problems).
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Outline of our solution

A mixture of 
trajectories

Clusters

Estimated LDS models

Clustering and classification

("𝑨 ! , %𝑾(!)) ("𝑨 $ , %𝑾($)) ("𝑨 % , %𝑾(%))

Model estimation
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A two-stage approach

Stage 1: coarse estimation

• Subspace estimation

• Clustering of trajectories (assisted by variance reduction)

• Initial model estimation within each cluster

Stage 2: refined estimation

• Classification of additional trajectories

• Refined model estimation within each cluster

The algorithm outline is largely inspired by the works on meta-learning for mixed
linear regression (Kong et al., 2020a;b), but the detailed implementations are
substantially different due to temporal dependence in mixed LDSs; see Section 2 of
paper for detailed algorithms.
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Assumptions for simplification

Initial state: each trajectory starts at xm,0 = 0. (Another canonical
case is when the short trajectories are segments of a single continuous
trajectory; the main results are slightly different, and included in the paper.)

Balanced clusters: each LDS model accounts for (order-wise) 1/K
proportion of data.

Sample splitting: M sample trajectories,

{1, 2, . . . ,M} =Msubspace ∪Mclustering ∪Mclassification.

Assume that each trajectory inMo has the same length To, and
denote the total sample size ofMo as Ttotal,o = To · |Mo|.
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Essential assumptions

Mixing: for each A ∈ {A(k)} and all t ≥ 1, ‖At‖ ≤ κA · ρt for some
0 ≤ ρ < 1; denote mixing time tmix := 1/(1− ρ).

Stationary autocovariance matrices {Γ(k),Y (k)}, where

Γ(A,W ) := E
[
xtxt

>|A,W
]
,

Y (A,W ) := E
[
xt+1xt

>|A,W
]
.

Model separation: there exist δΓ,Y , δA,W > 0 such that

‖Γ(k) − Γ(`)‖2F + ‖Y (k) − Y (`)‖2F ≥ d · δ2
Γ,Y ,

‖A(k) −A(`)‖2F + ‖W (k) −W (`)‖2F ≥ d · δ2
A,W ,

for all 1 ≤ k < ` ≤ K
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Theorem. With high probability, the proposed two-stage method
achieves exact clustering and classification of the sample trajectories,
as well as final model estimation errors

‖Â(k) −A(k)‖ ≤ ε, ‖Ŵ (k) −W (k)‖
‖W (k)‖

≤ ε, 1 ≤ k ≤ K,

provided the following sample complexities:

Tsubspace & tmix, Ttotal,subspace & tmixd

(
K4

δ4
Γ,Y

+ 1
)
,

Tclustering & tmix

(
1

δ2
Γ,Y

√
K

d
+ 1
)
, Ttotal,clustering & Kd

(
1

δ2
A,W

+ 1
)
,

Tclassification &
1

dδ2
A,W

+ 1, Ttotal,clustering + Ttotal,classification &
Kd

ε2
.

See Section 3 of paper for formal theorems.
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‖W (k)‖

≤ ε, 1 ≤ k ≤ K,

provided the following sample complexities:

Tsubspace & tmix, Ttotal,subspace & tmixd

(
K4

δ4
Γ,Y

+ 1
)
,

Tclustering & tmix

(
1

δ2
Γ,Y

√
K

d
+ 1
)
, Ttotal,clustering & Kd

(
1

δ2
A,W

+ 1
)
,

Tclassification &
1

dδ2
A,W

+ 1, Ttotal,clustering + Ttotal,classification &
Kd

ε2
.

See Section 3 of paper for formal theorems.

10 / 12



Summary

• Problem formulation of mixed LDSs;

• A two-stage approach for solving it;

• Theoretical guarantees with non-asymptotic sample complexities.
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Future works

• Strengthening the theoretical analysis and algorithm design.

• Learning mixtures of more general time-series models. (Our
algorithms essentially require (1) mixing; (2) the existence of
stationary autocovariance matrices; (3) well-specified parametric
models, and sufficient separation among them.)

• Applications in real-world problems.

• Extensions to the cases with controlled inputs, e.g. LQR in
control and latent MDP in reinforcement learning.

Thank you!
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