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Mixtures of time-series models

Mixture models are powerful in the face of heterogeneous and
complex time-series data

LT T TS S———

2/12



Mixtures of time-series models

Mixture models are powerful in the face of heterogeneous and
complex time-series data

LT T TS S———

e Higher accuracy of fitting the data

e Better interpretability: reveal cluster structures
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Numerous applications

(Bulteel et al., 2016) Time-series measurements of certain
psychological symptoms for multiple patients — identify subgroups of
patients, provide tailored treatments.
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(Bulteel et al., 2016) Time-series measurements of certain
psychological symptoms for multiple patients — identify subgroups of
patients, provide tailored treatments.

(Hallac et al., 2017) Sensory data of a car under a few driving modes
(e.g. “driving straight”, “slowing down”, “turning”, etc.)

(Brunskill et al., 2009) Sensory data of a robot navigating a complex
environment (e.g. with areas of grass, sand, carpets, rocks, etc.)

3/12



Problem formulation

Recap: linear dynamical system (LDS). A d-dimensional
time-series trajectory {x;} generated by an LDS model, i.e. the d x d
state transition matrix A and noise covariance W'
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Problem formulation

Recap: linear dynamical system (LDS). A d-dimensional
time-series trajectory {x;} generated by an LDS model, i.e. the d x d
state transition matrix A and noise covariance W'

i1 = Axy +wy, where Elw] =0, cov(w,) =W > 0.
Mixed LDSs. K models {A®) W)Y, e, M trajectories
{Xmi<m<m, where X, = {@,, .} is generated by the k,-th model:

Tmt+1l = A(km)ajm,t + W t, Cov(wm,t) = W(km)

Note that the labels {k,,} are unknown!
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Literature: lack of provable guarantees for model estimation
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Literature: lack of provable guarantees for model estimation

Major challenges:

e Latent variables are not observed:;

e Short trajectories might have lengths much smaller than the
model dimension d;

e Temporal dependence inherent to time series (in contrast to
mixed regression problems).
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Outline of our solution

A mixture of
trajectories
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A two-stage approach

Stage 1: coarse estimation

e Subspace estimation
e Clustering of trajectories (assisted by variance reduction)

e |nitial model estimation within each cluster
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Assumptions for simplification

Initial state: each trajectory starts at @, = 0.

Balanced clusters: each LDS model accounts for (order-wise) 1/K
proportion of data.

Sample splitting: M sample trajectories,
{17 27 < 7M} = Msubspace U Mclustering U Mclassiﬁcation'

Assume that each trajectory in M, has the same length T,, and
denote the total sample size of M, as Tiotalo = 1o - |[Mo|.
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Essential assumptions

Mixing: for each A € {A®)} and all t > 1, ||AY|| < k4 - p* for some
0 < p < 1; denote mixing time tmix == 1/(1 — p).
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Essential assumptions

Mixing: for each A € {A®)} and all t > 1, ||AY|| < k4 - p* for some
0 < p < 1; denote mixing time tmix == 1/(1 — p).

Stationary autocovariance matrices {T'*), Y (*)} where
T(A, W) :=E[xx, |A, W],
Y(A,W) =E[zx 1z |A,W].

Model separation: there exist or y,d4,w > 0 such that

IT® —TOPR + Y ® - YO > -,
A% — AOP +[W® - WO > 63,

forall 1<k < /<K

9/12



Theorem. With high probability, the proposed two-stage method
achieves exact clustering and classification of the sample trajectories,
as well as final model estimation errors
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Summary

e Problem formulation of mixed LDSs;
e A two-stage approach for solving it;

e Theoretical guarantees with non-asymptotic sample complexities.
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Future works

e Strengthening the theoretical analysis and algorithm design.
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Future works

e Strengthening the theoretical analysis and algorithm design.

e Learning mixtures of more general time-series models.

e Applications in real-world problems.

e Extensions to the cases with controlled inputs, e.g. LQR in
control and latent MDP in reinforcement learning.

Thank you!
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