Large Batch Experience Replay

Thibault Lahire, Matthieu Geist, Emmanuel Rachelson

ISAE-SUPAERO & Google Research

Take-away messages

- Deep Reinforcement Learning and replay buffers: the DQN case
- Prioritized Experience Replay (PER): samples transitions with high error
- PER is a heuristic for DQN: what about PER for any loss, distributional RL or twin critics?
- Supervised Learning: importance sampling to reduce variance of the stochastic gradient
- This paper:
 - PER = importance sampling in an heuristic way
 - This heuristic can be improved: Large Batch Experience Replay

RL basics

DQN:

- ullet Replay buffer of size N
- Neural network $Q_{ heta}$
- ullet Target network $\,Q_{targ}$
- Uniform sampling for SGD step on the loss:

$$\frac{1}{N} \sum_{i=1}^{N} \left(r_i + \gamma \max_{a'} Q_{targ}(s_i', a') - Q_{\theta}(s_i, a_i) \right)^2$$

Replay buffer

Prioritized Experience Replay (Schaul et al., 2016)

TD error $p_i^{PER} \propto |Q_{\theta}(x_i) - y_i|$

PER samples transitions with high

$$\begin{cases} x_i &= (s_i, a_i) \\ y_i &= r_i + \gamma \max_{a'} Q_{targ}(s_i', a') \end{cases}$$
 What about PER for:

- Any loss?
- Distributional RL?
 - Rainbow (Hessel et al.,
 2018) → loss as priority
- Twin critics → Two TD errors...

Importance Sampling for Approximate Dynamic Programming

In supervised learning, equivalence between:

High convergence speed

Low variance of the gradient estimate

Appropriate sampling distribution

Importance Sampling for Supervised Learning

- ullet Let p be the sampling scheme and G_i the per-sample gradient
- Minimize the variance of the stochastic gradient by solving: $\min_p \mathbb{E}_{i \sim p}[G_i^\top G_i]$
- Optimal sampling scheme is: $p_i^* \propto \|
 abla_{ heta} \ell(Q_{ heta}(x_i), y_i) \|_2$
- Highest convergence speed!
- BUT:
 - Computation requires forward AND backward pass
 - Must be done for ALL collected samples

→ Impractical

PER: two approximations

- Approximate priorities
- If L2 loss, $p_i^* \propto \|\nabla_{\theta} \ell(Q_{\theta}(x_i), y_i)\|_2$ $= [Q_{\theta}(x_i) y_i] \times \|\nabla_{\theta} Q_{\theta}(x_i)\|_2$

• If $\|\nabla_{\theta}Q_{\theta}(x_i)\|_2$ is constant, then

TD error

$$p_i^* \propto \|\nabla_{\theta} \ell(Q_{\theta}(x_i), y_i)\|_2$$
$$\propto |Q_{\theta}(x_i) - y_i|$$

Gradient Experience Replay

- Same data structure as PER
 - Identical hyper-parameters
- Uses per-sample gradient

norms instead of TD errors

Large Batch Experience Replay

samples uniformly replay buffer downsamples with per-sample gradient norms

LaBER algorithm

- I. Sample uniformly a large batch
- Compute exact per-sample gradient norms
- Downsample to a mini-batch
 according to per-sample gradient
 norms computed
- 4. Perform SGD step on mini-batch

SGD step

Experimental results

Large Batch Experience Replay: key advantages

- Just one hyperparameter: the factor m between the large batch and the mini-batch
- Improvements over vanilla DQN or PER
- Easy to code and backed by theory
- Straight extension to:
 - any loss function
 - distributional RL
 - twin critics

Conclusion

- PER: heuristic performing variance reduction of the stochastic gradient
- LaBER yields improvement with:
 - less hyperparameters
 - less code to write
 - broad application possibilities

More information in the paper!