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e Deep Reinforcement Learning and replay buffers : the DQN case

e Prioritized Experience Replay (PER) : samples transitions with high error

e PER s a heuristic for DQN: what about PER for any loss, distributional RL or twin critics ?

e Supervised Learning: importance sampling to reduce variance of the stochastic gradient

e This paper:

o PER = importance sampling in an heuristic way

o This heuristic can be improved: Large Batch Experience Replay
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What about PER for:

e Any loss?
forward pass ﬁ
e Distributional RL?
High TD errors o Rainbow (Hessel et al.,
sampling 2018) — loss as priority
priorityv v v v e Twin critics — Two TD errors..
list SGD step
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_ In supervised learning, equivalence between:
target network fixed _| step t
+ replay buffer fixed P

Supervised High convergence speed
Learning problem

target network fixed e step t+1

+ replay buffer fixed Low variance of the gradient estimate
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o Let p be the sampling scheme and GZ- the per-sample gradient
e Minimize the variance of the stochastic gradient by solving: Hgl’l Eir\/p [G;r Gz‘]
e Optimal sampling scheme is: p;k X ||V9€(Q0 (sz), yz) ||2
e Highest convergence speed!
e BUT:
o Computation requires forward AND backward pass

o Must be done for ALL collected samples — Impractical



e Approximate priorities e Outdated priorities
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o |If ||V9Q9(CUZ)||2 is constant, then

M =
p; < [[Vol(Qo(z:), yi)ll2 7

X |Q9 ([L’Z) — Y; | low priority might never change...
and associated sample never selected ’
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samples uniformly replay buffer

LaBER algorithm

1. Sample uniformly a large batch

2. Compute exact per-sample gradient

norms
downsamples with per-sample gradient norms

3. Downsample to a mini-batch

—_ according to per-sample gradient

norms computed

4. Perform SGD step on mini-batch

SGD step



e \What about just a larger mini-batch ? e PERvsLaBER?
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e Just one hyperparameter: the factor m between the large batch and the mini-batch

e Improvements over vanilla DQN or PER

e FEasy to code and backed by theory
replay buffer

e Straight extension to:

o any loss function large batch

o distributional RL

L mini-batch
o twin critics
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e PER: heuristic performing variance reduction of the stochastic gradient
e LaBER yields improvement with:

o less hyperparameters

o less code to write

o broad application possibilities

More information in the paper!
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