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Monte Carlo objectives

Goal: expectation based objectives of the form E,_ ,[f(x)]

Can be found in many areas:
o Variational inference: Eg_ (;1[In p(x,z) — In gy(2|x)]

@ Reinforcement learning: E%(X)[ZZ 0 r(se, ar)]

e Finance (options pricing): E,_(s;)[e™?" max{st — K,0}]
@ Operations research (discrete queuing): Eps(nir) {%}

Experimental design: EP¢(Y)[]'y<Ybest]

Et al. SDEs, GANs, bandits and online learning, econometrics,
instrumental variables, counterfactual reasoning, ...
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Discrete variational autoencoder

e Maximize evidence lower bound (ELBO):

Letgo = Eq,(zx)[In pa(z, x) — In gp(2]x)] < In p(x)

Equivalent to minimizing KL divergence KL(q(z|x)||p(z|x)
q(z|x) is called an encoder, usually deep neural network x — ¢
p(x|z) is a decoder, also neural network

p(z) is a prior distribution

In a discrete VAE q(z|x) = H?:l Bern(zq|o(¢q)), with logits ¢

-

V4

-

p(Z)
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Monte Carlo gradients

Why Monte Carlo gradients?

Most expectations are too complicated to integrate
Why the score function (REINFORCE) gradient?
Most general, works with almost any distribution:

v¢>Ep¢,(x)[f(x)] - Ep¢(x)[f(x)v¢> In pd)(x)]

Unbiased: E[grr(x)] = E[f(x)VInpy(x)] = V4
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Estimators for binary variables

o General REINFORCE: f(z)V In ps(z). What if z is binary?
@ Let b~ Bern(p), p = o(¢).
e REINFORCE: grr = f(b)(b — p).
@ What if we have n independent samples?
@ LOORF (Leave One Out REINFORCE):
1< 1<
gloorr = ——= > (F(b)) = — > (b;))(bi — p)
i—1 j=1
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Antithetic estimators for binary variables

What if we want to use antithetic (negatively correlated) pairs?
If u~ Unif(0,1), then 1,., ~ Bern(p).

ARM: garm = (F(Lu<p) — F(Lus1-p)) (5 — u).

Let b= 1ycp, b/ = 1ys1-p.

DisARM/U2G noticed randomness can be integrated out:

gpisarm = 5 (f(b) — £(b')) (b — b') max(p, 1 — p)
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@ n-dimensional or multivariate probability distribution with uniform
marginals.

u=(u1,...,up) ~ Cp, such that Vi : u; ~ Unif(0, 1).
How to create a copula?

Start with some multivariate distribution M.
Calculate all marginal CDFs: Vi : Fy.(x).

Apply them to any sample: x = (x1, ..., Xp) ~ M.

u = (u1, .., up), where u; = F,.(x;), is a copula sample.
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Approach

n independent samples (LOORF) perform better than n/2 antithetic
pairs (DisARM)

Is it possible to combine the two approaches?

Yes! If we can:

Sample n antithetic variables

Debias the estimator
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e LOORF for n =27 b, b’ ~ Bern(p)

82-LOORF = %(f(b) - f(bl))(b - b,)

@ DisARM for b= 1., b' = La—uy<p

8DisARM = %(f(b) - f(b’))(b — b'Ymax(p,1 — p)

@ Two extremes: no correlation <—— minimal correlation (antithetic).

@ Can we generalize to an arbitrarily dependent Bernoulli pair? Yes!
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Antithetic Reinforce Two Sample (ARTS) Estimator

Let (b, b') ~ Ba(p) denote a sample from a bivariate Bernoulli
distribution with correlation p = corr(b, b’).

@ An unbiased estimator is:

_ &ioorr _ 1 TPNYT R
gunrs = 510 = (£(6) — () (b~ )~

If p =0, we obtain two sample LOORF.
What is the lowest possible correlation for a Bernoulli pair b, b'?

p = —min(75, 1_7”), which results in DisARM.
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How to go from two to n samples?

o Key observation: LOORF is exactly the same as averaging all (5)
pairs!

n

8LOORF (b1, .., by) = %Z (f(bi) - %Z f(bj)) Vg In p(bi)
=1

i=1

b 3 % <f(b,-) - f(bj)> (v¢ In p(b;) — Vg In p(bj))

-1
"(" )%
= ﬁ Zgz LOORF(bn b; )
i#]

@ ldea: what if the debiasing term is identical for all pairs?
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ARMS

Assume we have n Bernoulli variables, with p = corr(b;, b;), Vi # j.

@ An unbiased gradient is:

8LOORF 1 1 o bi —p
&EARMS 1-p n_1i§1<( ) nE (J)>

Last hurdle: how to sample n antithetic Bernoulli?
If we have n antithetic uniform variables.
Then b; = 1,,«p are antithetic Bernoulli.

How to obtain n antithetic uniform variables? Copulas!

(Sidenote: must also be able to calculate rho)
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Antithetic Gaussian copula

Gaussian copula: numerical marginal and bivariate CDFs.
Sample (Xl, ...,Xn) ~ N(O, Z), with X; = 1, Z,‘j = —1/(/7 — 1).
Let u; = ®(x;), where ®(x) is the standard Gaussian CDF.
(u1,...,up) is a copula with pairwise correlation close to to pmin-
E[bibj]-p?
p(1—p)
E[b,‘bj] = P(b,’ = bj = 1) = P(u,- <p,uj < p) = (D(p, p).

The correlation between to Bernoulli variables is: p =
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Antithetic Dirichlet copula

When o = 1, we have both a analytical marginal and bivariate CDF.
Sample (di, ..., dn) ~ Dir(1,...,1).

Can alternatively do the following:

1. v ~ Unif(0,1),i=1...n

2. di=In(v;)/ 3271 In(v))

ui=1—(1—-d;)"?

_ max(02(1—p) 71 —1)"1—(1—p)?
P = p(1-p)
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How good are the correlations?

== == Dijrichlet

— Inverted
Dirichlet

=== (Gaussian
Lower
bound
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Putting it all together

@ Sample n antithetic uniform variables (either Dirichlet or Gaussian)
@ Transform to Bernoulli b; = 1,,<, and calculate p
© Obtain an unbiased estimator ARMS:

_ b Z f(b-)_lif(b-) bi—p
gARMS—n_li:1 i nj:1 O A
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Toy example

e Maximize: £(¢) = Ep[(b — 0.499)%], b~ Bern(c(¢))

@ Below: variance (all already unbiased) of each gradient as the
function is maximized from pj,;; = 0.05 to pepg = 0.95.

1e-7 2 samples 1e-g 4 samples 1e-g 6 samples 1e-g 8 samples
2 5.0 4
g ° 25 2
g ’ = ARMS-D
So 0 0.0 0 == ARMS-N
1e-g 10 samples 1e-8 20 samples " 1e-9 50 samples 1e-9 100 samples c— ARM
=4
g === DisARM
=] 5 == LOORF
2 1 2
o
0 0 0 0
025 050 0.75 025 050 0.75 025 050 075 025 050 0.75
a(¢) ()] o(¢) o(¢)
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Training ELBO

SAMPLES ARMS-D ARMS-N LOORF DIiSARM RELAX
= & 4 |-112.13£0.10 -111.96+0.09 -112.32+0.04 -113.26+£0.05 -112.98+0.25
®“ 5 6 |-111.03£0.02 -110.89+0.07 -110.99+0.07 -112.11£0.03 -111.46 £0.06
Z Z 8 | -110.30+0.04 -110.62+0.06 -110.42+0.04 -111.78+0.07 -110.58+0.01
E = 10 | -110.08£0.05 -110.14%0.09 -110.17+0.04 -111.08+0.11 -110.17 £0.09
s g 4 -98.65+0.16 -98.97+0.13 -98.62+0.05 -100.45+0.16 -100.52+0.08
b 5 6 -98.53+0.13 -97.87 £ 0.01 -98.14+0.18 -99.28 £0.11 -99.17 £0.17
S z 8 -97.90 + 0.12 -97.89 £ 0.10 -98.14 £0.21 -98.69 £0.21 -98.80 £ 0.02
z 10 -97.64 £ 0.06 -97.32 £ 0.11 -97.50 +0.29 -98.62+0.12 -98.69 +0.07
= ~ 4 |-25256+0.11 -252.69+0.06 -252.71+0.09 -254.02+0.05 -253.53+0.06
w < 6 |-251.94%0.13 -251.73+0.05 -252.03+0.08 -252.97+0.06 -252.31x0.14
Z Z 8 | -251.32+0.11 -251.11+0.23 -251.41£0.10 -252.57+0.05 -251.36+0.08
= 2 10| -251.29+0.02 -251.08+0.08 -251.26+0.03 -251.75+0.21 -251.16 +0.06
z
= & 4 | -235.65+0.12 -23575+0.06 -235.80%0.07 -236.54+0.06 -236.77+0.03
% 5 6 | -23547+0.19 -23536+0.08 -235.70+0.13 -235.94+0.05 -236.20+0.25
s % 8 |-23541£0.10 -23519+0.14 -23540+£0.13 -235.62+0.16 -235.70+0.14
z 10 | -235.18+0.11 -235.32+0.05 -235.59+0.01 -235.60+0.09 -235.46+0.19
v 4 | -118.25+0.08 -118.27£0.05 -118.41£0.07 -119.24+0.17 -118.75+0.08
= 5 6 | -117.62+0.01 -117.62+0.04 -117.75£0.08 -118.47+0.12 -117.90+0.03
o Z 8 |-117.60£0.05 -117.66+0.12 -117.74+0.10 -118.41+0.10 -117.71+0.02
2 = 10| -117.03+0.09 -116.99+0.04 -117.21£0.08 -117.70+0.01 -117.13%0.05
E g 4 | -112.09+0.27 -112.03+0.12 -112.20£0.26 -113.24+0.16 -114.08+0.35
© 5 6 |-111.50£0.06 -111.39+0.10 -111.26+0.15 -112.30+0.05 -113.71+0.13
Z 8 | -110.91+0.04 -111.01+0.06 -110.85+0.35 -111.82+0.09 -113.64+0.10
z 10 | -110.66 £ 0.05 -110.79+0.26 -110.79+0.20 -111.33+£0.19 -114.00+0.10
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Conclusion and future work

@ ARMS generalizes n iid samples (LOORF) and two antithetic samples
(DisARM)

@ Future work: extension to categorical variables, IWAE bound with
antithetic samples, ...
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Thank You!

Questions Welcome!



	Motivation
	Background
	Baseline gradients
	(Dis)ARM
	Copulas

	ARMS
	Two sample estimator
	Multi sample estimator
	Antithetic Copulas

	Results
	References

