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INTRODUCTION

• In this work, we present a deep neural network based solution
for implementing the Cold Boot Attack on AES keys

• Outline:
• Cold Boot Attack
• Our Method
• Empirical Evaluation & Ablation Study
• Conclusions

1



COLD BOOT ATTACK

• Cold boot attack is a side channel attack for stealing encryption
keys

• The attack is based on two assumptions:
1. The key has some fixed known redundancy
2. The attacker has access to a corrupted key

• The practicality of these assumptions
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THE COMPUTATIONAL PROBLEM

• We focus on the problem of recovering an encryption key from
its corrupted key by using the redundancy

• Previous techniques were based on:
• Integer programming
• Techniques from the field of error correcting codes
• SAT and MAX-SAT solvers

• We focus on the AES cipher

• Our method: Use deep neural network to approximate the key,
and use it to target the SAT solver
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OUR METHOD

• Our architecture contains two components:
• A Neural belief propagation decoder with neural S-box layers
• A Partial MAX-SAT solver
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APPROXIMATE THE KEY WITH NEURAL NETWORK

• Empirically, vanilla neural networks fails in this area

• Inspired by deep methods for error correcting codes we decided
to use Message Passing Neural Network

• By using a new formulation of the key expansion function as
liner error correcting code we success to define an appropriate
deep architecture

• With the new formulation, we can use known methods, such as
Belief Propagation Neural Network (Nachmani et al.)
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FORMALIZE THE AES KEY EXPANSION AS A COMPUTATIONAL GRAPH

• The AES key expansion defined by:

wi = wi−k ⊕ S(R(Wi−1))⊕ ci (1)

wi = wi−k ⊕ S(Wi−1) (2)

wi = wi−k ⊕ wi−1 (3)

Where Wi is the i dword in the key , S is a S-box transformation,
R is a rotation function, and ci, k are some constants

• Although S is nonlinear, by adding to W the variables S(R(Wi−1))

and S(Wi−1), one can convert this equations to a linear form
such that HW = 0
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TAYLOR THE BELIEF PROPAGATION NEURAL NETWORK

• The Belief Propagation Neural Network defined by a parity check
matrix H

• H non contains the nonlinear constrains (S-box constrains)

• Exploiting the nonlinear constraints with the neural S-box layers
after each original layer
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THE S-BOX LAYER AND THE NEURAL S-BOX

• Design to exploit the nonlinear constrains

• Each s-box layer consist of neural S-box instances

• Extend the S-box transformation behaviour for fraction values
by a fully connected neural network

• Despite S is highly non-linear, not differentiable and designed to
be resistant to such attacks our results show the effectiveness of
this tool
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RESULTS

Table 1: Performance evaluation for theoretical model (δ1 = 0). The success
rate of cold boot attack for AES-256 with different corruption rates. Higher is
better.

Model/Corruption rate 60% 65% 68% 70% 72% 74%

Tsow et al. 100.0 100.0 N/A 0.0 0.0 N/A

MAX-SAT 97.92 93.95 84.12 73.56 49.53 15.95
Ours 99.51 97.05 91.20 84.10 54.52 22.35
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ABLATIONS

• To isolate the contribution of the neural-sbox, we use two
ablations:
1. LC: an architecture that only defined by the linear constrains
2. OBPNN: an architecture that not include neural s-boxes
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CONCLUSIONS

• ML is often considered unsuitable for problems in cryptography,
we present convincing evidence in support of employing deep
learning in this domain

• We successfully approximate the S-box transformation by a
neural network, and the ablations study emphasizes the power
of this tool

• A new error correcting code representation of the AES family of
codes

• Combine the approach of the error correcting codes with the SAT
solver approach to achieve SOTA results
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