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Key Challenges of High-Dimensional Contextual Bandits

Need to deal with high-dimensional context

• Context dimension is potentially larger than the time horizon

• Exploration duration cannot scale with ambient context dimension

However, the reward model is typically sparse

• Only small number of features are relevant w.r.t reward model.

But, this sparse structure is unknown!

Key challenge: How can we ensure statistical efficiency?
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High-Dimensional Contextual Bandits

Generalized linear contextual (GLM) bandits

For each round t = 1, ..., T

• Contexts {Xt,i ∈ Rd | i ∈ [K]} drawn from (unknown) pX

• Agent selects an arm at ∈ [K]

• Agent observes reward:

Yt = µ(X>t,atβ
∗)︸ ︷︷ ︸

expected reward

+εt

εt ∼ sub-Gaussian with parameter σ

β∗ ∈ Rd unknown to agent; µ link function of GLM

High-dimensional GLM bandits

• Context dimension is large (d� 1), even potentially d > T .

• β∗ is sparse, i.e., ‖β∗‖0 = s0 with s0 � d.

• Sparsity s0 is unknown to agent.
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Drawback of Existing Work

Emerging body of work on high-dimensional contextual bandit

• Abbasi-Yadkori et al. (2012); Gilton and Willett (2017); Wang et al.
(2018); Kim and Paik (2019); Bastani and Bayati (2020)

Crucial drawback of existing work1

• They require prior knowledge of sparsity s0!

• Information on s0 is almost never available in practice.

Question: Can design a sparsity-agnostic algorithm and prove its regret?

1Carpentier and Munos (2012) do not require to know sparsity, but both their algorithm and
analysis are limited to the fixed `2 unit ball arm set.
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Why do existing methods need sparsity s0?
Bastani and Bayati (2020); Wang et al. (2018); Kim and Paik (2019), etc.

To ensure “suitable” concentration:

• Assume theoretical Gram matrix satisfies compatibility condition.

• Use forced-sampling2 to draw sufficient i.i.d. samples to satisfy
compatibility condition of empirical Gram matrix.

• Forced-sampling duration is calibrated with using s0.

Key findings in our analysis

• i.i.d. samples are in fact not essential.

• Empirical Gram matrix satisfies compatibility without i.i.d. samples!

• Even when s0 is known, drawing i.i.d. samples can be wasteful.

2Technique developed in Goldenshluger and Zeevi (2013)
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Sparsity-Agnostic (SA) Lasso Bandit

Input parameter: λ0

For each round t = 1, ..., T do:

1. Observe Xt,i for all i ∈ [K]

2. Compute at = arg maxi∈[K]X
>
t,iβ̂t

3. Pull arm at and observe Yt

4. Update penalty parameter λt ← λ0

√
4 log t+2 log d

t

5. Lasso update β̂t+1 ← arg minβ
{
`t(β) + λt‖β‖1

}
The algorithm requires one parameter λ0

• Establish regret bound with λ0 = 2σmaxt,i{‖Xt,i‖2}.
• Need bound on noise variance σ and the `2 norm of Xt,i.

• It does not depend on the sparsity index s0
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Regret Analysis for Two-Armed Sparse Bandit

Definitions

• Theoretical Gram matrix Σ := 1
K
E[X>X] where X ∈ RK×d

• Support set S0 := {j : β∗j 6= 0}

Assumptions

• [Boundedness] X ∈ X , ‖X‖2 ≤ 1. κmin ≤ µ̇(X>β) ≤ κmax

• [Compatibility condition] For support set S0, ∃φ2
0 > 0 such that

φ2
0 ≤

s0β
>Σβ

‖βS0‖21
for all β with ‖βSc

0
‖1 ≤ 3‖βS0‖1

• [Relaxed symmetry]3 For pX , ∃ρ0 <∞ such that pX (−x)
pX (x)

≤ ρ0 ∀x

We only need the parameters (κmin, κmax, φ0, ρ0) to exist. We do not need
to know their values.

3In (non-sparse) low dimensional settings, this condition is equivalent to “covariate diversity”
in Bastani et al. (2020)



Regret Bound of SA Lasso Bandit for Two Arms

Theorem (Regret bound for two arms)

The expected regret of the SA Lasso Bandit policy π for two arms over
horizon T is upper-bounded by

RegretT (π) = O
(
s0
√
T log(dT )

)
.

• SA Lasso Bandit achieves this bound without knowing s0.

• Correct dependence on d and s0 based on offline Lasso results4

• Tighter than previously known O
(
s0
√
T log(dT )

)
regret (Kim and

Paik, 2019) which assumes knowledge of s0

4e.g., Theorem 6.1 in Bühlmann and Van De Geer (2011)



Regret bound of SA Lasso Bandit for K arms

Theorem (Regret bound for K arms)

The expected regret of the SA Lasso Bandit policy π for K arms over
horizon T is upper-bounded by

RegretT (π) = O
(
CX s0

√
T log(dT )

)
.

• Achieve the same rate as the regret bound for two-arm case – without
prior knowledge on s0

• Main difference is how Σt is controlled with Σ.

• Both for two arms and K arms, first regret analysis of a general
sparse bandit algorithm that does not require the knowledge of s0.



Results of the numerical experiments
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• Report the average cumulative regret over 20 independent runs.

• The error bars represent the standard deviations.
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