Sparsity-Agnostic Lasso Bandit

Min-hwan Oh¹, Garud Iyengar², and Assaf Zeevi²

¹Seoul National University, ²Columbia University

Need to deal with high-dimensional context

- Context dimension is potentially larger than the time horizon
- Exploration duration cannot scale with ambient context dimension

Need to deal with high-dimensional context

- Context dimension is potentially larger than the time horizon
- Exploration duration cannot scale with ambient context dimension

However, the reward model is typically sparse

• Only small number of features are relevant w.r.t reward model.

Need to deal with high-dimensional context

- Context dimension is potentially larger than the time horizon
- Exploration duration cannot scale with ambient context dimension

However, the reward model is typically sparse

Only small number of features are relevant w.r.t reward model.

But, this sparse structure is unknown!

Need to deal with high-dimensional context

- Context dimension is potentially larger than the time horizon
- Exploration duration cannot scale with ambient context dimension

However, the reward model is typically sparse

• Only small number of features are relevant w.r.t reward model.

But, this sparse structure is unknown!

Key challenge: How can we ensure statistical efficiency?

High-Dimensional Contextual Bandits

Generalized linear contextual (GLM) bandits

For each round t = 1, ..., T

- Contexts $\{X_{t,i} \in \mathbb{R}^d \mid i \in [K]\}$ drawn from (unknown) $p_{\mathcal{X}}$
- Agent selects an arm $a_t \in [K]$
- Agent observes reward:

$$Y_t = \underbrace{\mu(X_{t,a_t}^{ op} eta^*)}_{ ext{expected reward}} + \epsilon_t$$

 $\epsilon_t \sim$ sub-Gaussian with parameter σ

 $\beta^* \in \mathbb{R}^d$ unknown to agent; μ link function of GLM

High-Dimensional Contextual Bandits

Generalized linear contextual (GLM) bandits

For each round t = 1, ..., T

- Contexts $\{X_{t,i} \in \mathbb{R}^d \mid i \in [K]\}$ drawn from (unknown) $p_{\mathcal{X}}$
- Agent selects an arm $a_t \in [K]$
- Agent observes reward:

$$Y_t = \underbrace{\mu(X_{t,a_t}^{\top} \beta^*)}_{\text{expected reward}} + \epsilon_t$$

 $\epsilon_t \sim$ sub-Gaussian with parameter σ

 $\beta^* \in \mathbb{R}^d$ unknown to agent; μ link function of GLM

High-dimensional GLM bandits

- Context dimension is <u>large</u> $(d \gg 1)$, even potentially d > T.
- β^* is sparse, i.e., $\|\beta^*\|_0 = s_0$ with $s_0 \ll d$.
- Sparsity s_0 is <u>unknown</u> to agent.

Drawback of Existing Work

Emerging body of work on high-dimensional contextual bandit

• Abbasi-Yadkori et al. (2012); Gilton and Willett (2017); Wang et al. (2018); Kim and Paik (2019); Bastani and Bayati (2020)

Crucial drawback of existing work¹

- They require <u>prior</u> knowledge of sparsity s_0 !
- Information on s_0 is almost never available in practice.

Question: Can design a sparsity-agnostic algorithm and prove its regret?

Drawback of Existing Work

Emerging body of work on high-dimensional contextual bandit

• Abbasi-Yadkori et al. (2012); Gilton and Willett (2017); Wang et al. (2018); Kim and Paik (2019); Bastani and Bayati (2020)

Crucial drawback of existing work¹

- They require prior knowledge of sparsity $s_0!$
- Information on s_0 is almost never available in practice.

Question: Can design a sparsity-agnostic algorithm and prove its regret?

 $[\]overline{}^1$ Carpentier and Munos (2012) do not require to know sparsity, but both their algorithm and analysis are limited to the fixed ℓ_2 unit ball arm set.

Why do existing methods need sparsity s_0 ?

Bastani and Bayati (2020); Wang et al. (2018); Kim and Paik (2019), etc.

To ensure "suitable" concentration:

- Assume theoretical Gram matrix satisfies compatibility condition.
- Use forced-sampling² to draw sufficient i.i.d. samples to satisfy compatibility condition of empirical Gram matrix.
- Forced-sampling duration is calibrated with using s_0 .

²Technique developed in Goldenshluger and Zeevi (2013)

Why do existing methods need sparsity s_0 ?

Bastani and Bayati (2020); Wang et al. (2018); Kim and Paik (2019), etc.

To ensure "suitable" concentration:

- Assume theoretical Gram matrix satisfies compatibility condition.
- Use forced-sampling² to draw sufficient i.i.d. samples to satisfy compatibility condition of empirical Gram matrix.
- Forced-sampling duration is calibrated with using s_0 .

Key findings in our analysis

- i.i.d. samples are in fact not essential.
- Empirical Gram matrix satisfies compatibility without i.i.d. samples!
- ullet Even when s_0 is known, drawing i.i.d. samples can be wasteful.

²Technique developed in Goldenshluger and Zeevi (2013)

Sparsity-Agnostic (SA) Lasso Bandit

Input parameter: λ_0

For each round t = 1, ..., T do:

- 1. Observe $X_{t,i}$ for all $i \in [K]$
- 2. Compute $a_t = \arg\max_{i \in [K]} X_{t,i}^{\top} \hat{\beta}_t$
- 3. Pull arm a_t and observe Y_t
- 4. Update penalty parameter $\lambda_t \leftarrow \lambda_0 \sqrt{\frac{4 \log t + 2 \log d}{t}}$
- 5. Lasso update $\hat{\beta}_{t+1} \leftarrow \arg\min_{\beta} \left\{ \ell_t(\beta) + \lambda_t \|\beta\|_1 \right\}$

The algorithm requires one parameter λ_0

- Establish regret bound with $\lambda_0 = 2\sigma \max_{t,i} \{ \|X_{t,i}\|_2 \}$.
- Need bound on noise variance σ and the ℓ_2 norm of $X_{t,i}$.
- It does <u>not</u> depend on the sparsity index s_0

Sparsity-Agnostic (SA) Lasso Bandit

Input parameter: λ_0

For each round t = 1, ..., T do:

- 1. Observe $X_{t,i}$ for all $i \in [K]$
- 2. Compute $a_t = \arg\max_{i \in [K]} X_{t,i}^{\top} \hat{\beta}_t$
- 3. Pull arm a_t and observe Y_t
- 4. Update penalty parameter $\lambda_t \leftarrow \lambda_0 \sqrt{\frac{4 \log t + 2 \log d}{t}}$
- 5. Lasso update $\hat{\beta}_{t+1} \leftarrow \arg\min_{\beta} \left\{ \ell_t(\beta) + \lambda_t \|\beta\|_1 \right\}$

The algorithm requires one parameter λ_0

- Establish regret bound with $\lambda_0 = 2\sigma \max_{t,i} \{ \|X_{t,i}\|_2 \}$.
- Need bound on noise variance σ and the ℓ_2 norm of $X_{t,i}$.
- It does <u>not</u> depend on the sparsity index s_0

Regret Analysis for Two-Armed Sparse Bandit

Definitions

- Theoretical Gram matrix $\Sigma := \frac{1}{K}\mathbb{E}[\mathbf{X}^{\top}\mathbf{X}]$ where $\mathbf{X} \in \mathbb{R}^{K \times d}$
- Support set $S_0 := \{j : \beta_j^* \neq 0\}$

Assumptions

- [Boundedness] $X \in \mathcal{X}$, $||X||_2 \le 1$. $\kappa_{\min} \le \dot{\mu}(X^{\top}\beta) \le \kappa_{\max}$
- [Compatibility condition] For support set S_0 , $\exists \phi_0^2 > 0$ such that

$$\phi_0^2 \le \frac{s_0 \beta^\top \Sigma \beta}{\|\beta_{S_0}\|_1^2} \text{ for all } \beta \text{ with } \|\beta_{S_0^c}\|_1 \le 3\|\beta_{S_0}\|_1$$

• [Relaxed symmetry]³ For $p_{\mathcal{X}}$, $\exists \rho_0 < \infty$ such that $\frac{p_{\mathcal{X}}(-\mathbf{x})}{p_{\mathcal{X}}(\mathbf{x})} \leq \rho_0 \ \forall \mathbf{x}$

We only need the parameters $(\kappa_{\min}, \kappa_{\max}, \phi_0, \rho_0)$ to exist. We do not need to know their values.

 $^{^{3}}$ In (non-sparse) low dimensional settings, this condition is equivalent to "covariate diversity" in Bastani et al. (2020)

Regret Bound of SA Lasso Bandit for Two Arms

Theorem (Regret bound for two arms)

The expected regret of the SA Lasso Bandit policy π for two arms over horizon T is upper-bounded by

$$Regret_T(\pi) = \mathcal{O}(s_0 \sqrt{T \log(dT)}).$$

- SA Lasso Bandit achieves this bound without knowing s_0 .
- Correct dependence on d and s_0 based on offline Lasso results 4
- Tighter than previously known $\mathcal{O}(s_0\sqrt{T}\log(dT))$ regret (Kim and Paik, 2019) which assumes knowledge of s_0

⁴e.g., Theorem 6.1 in Bühlmann and Van De Geer (2011)

Regret bound of SA Lasso Bandit for K arms

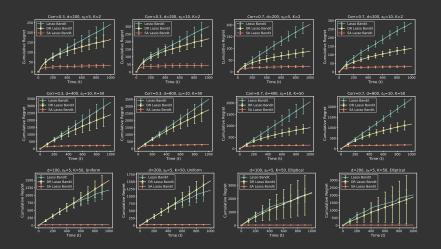
Theorem (Regret bound for K arms)

The expected regret of the SA Lasso Bandit policy π for K arms over horizon T is upper-bounded by

$$Regret_T(\pi) = \mathcal{O}(C_{\mathcal{X}} s_0 \sqrt{T \log(dT)})$$
.

- Achieve the same rate as the regret bound for two-arm case without prior knowledge on s_0
- Main difference is how Σ_t is controlled with Σ .
- Both for two arms and K arms, <u>first regret analysis</u> of a general sparse bandit algorithm that does not require the knowledge of s_0 .

Results of the numerical experiments



- Report the average cumulative regret over 20 independent runs.
- The error bars represent the standard deviations.

References I

- Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2012). Online-to-confidence-set conversions and application to sparse stochastic bandits. In Artificial Intelligence and Statistics, pages 1–9.
- Bastani, H. and Bayati, M. (2020). Online decision making with high-dimensional covariates. Operations Research, 68(1):276–294.
- Bastani, H., Bayati, M., and Khosravi, K. (2020). Mostly exploration-free algorithms for contextual bandits. Management Science.
- Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.
- Carpentier, A. and Munos, R. (2012). Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. In Artificial Intelligence and Statistics, pages 190–198.
- Gilton, D. and Willett, R. (2017). Sparse linear contextual bandits via relevance vector machines. In 2017 International Conference on Sampling Theory and Applications (SampTA), pages 518-522. IEEE.
- Goldenshluger, A. and Zeevi, A. (2013). A linear response bandit problem. Stochastic Systems, 3(1):230-261.
- Kim, G.-S. and Paik, M. C. (2019). Doubly-robust lasso bandit. In <u>Advances in Neural Information Processing Systems</u>, pages 5869–5879.
- Wang, X., Wei, M., and Yao, T. (2018). Minimax concave penalized multi-armed bandit model with high-dimensional covariates. In International Conference on Machine Learning, pages 5200–5208.