

Oops I took a gradient!

Scalable sampling for discrete distributions ICML 2021

Will Grathwohl Kevin Swersky Milad Hashemi David Duvenaud Chris J. Maddison

VECTOR INSTITUTE

Google Al

Energy-Based Models

 An energy-based model (EBM) is a probability model in the following form:

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z(\theta)} \qquad Z(\theta) = \int_{x} e^{-E_{\theta}(x)} dx$$

• Where $E_{\theta}(x) : \chi \to R$ fully specifies the model so $Z(\theta)$ does not need to be modelled

$$\log p_{\theta}(x) = -E_{\theta}(x) - \log Z(\theta)$$
$$= -E_{\theta}(x) - \log \int e^{-E_{\theta}(x)} dx$$

• To maximize likelihood we must compute

$$\log p_{\theta}(x) = -E_{\theta}(x) - \log Z(\theta)$$
$$= -E_{\theta}(x) - \log \int e^{-E_{\theta}(x)} dx$$

• Which is intractable

$$\log p_{\theta}(x) = -E_{\theta}(x) - \log Z(\theta)$$
$$= -E_{\theta}(x) - \log \int e^{-E_{\theta}(x)} dx$$

- Which is intractable
- The gradient however is simpler

$$\nabla_{\theta} \log p_{\theta}(x) = -\nabla_{\theta} E_{\theta}(x) - \mathbf{E}_{p_{\theta}(x)} [\nabla_{\theta} E_{\theta}(x)]$$

$$\log p_{\theta}(x) = -E_{\theta}(x) - \log Z(\theta)$$
$$= -E_{\theta}(x) - \log \int e^{-E_{\theta}(x)} dx$$

- Which is intractable
- The gradient however is simpler

$$\nabla_{\theta} \log p_{\theta}(x) = -\nabla_{\theta} E_{\theta}(x) - \mathbf{E}_{p_{\theta}(x)} [\nabla_{\theta} E_{\theta}(x)]$$

- Draw samples to estimate gradient
- We can use this to train

$$\log p_{\theta}(x) = -E_{\theta}(x) - \log Z(\theta)$$
$$= -E_{\theta}(x) - \log \int e^{-E_{\theta}(x)} dx$$

- Which is intractable
- The gradient however is simpler

$$\nabla_{\theta} \log p_{\theta}(x) = -\nabla_{\theta} E_{\theta}(x) - \mathbf{E}_{p_{\theta}(x)} [\nabla_{\theta} E_{\theta}(x)]$$

- Draw samples to estimate gradient
- We can use this to train

- Let $E_{\theta}(x)$ be a deep neural network $E_{\theta}(x) = -f_{\theta}(x)$
- How to sample?

- Let $E_{\theta}(x)$ be a deep neural network $E_{\theta}(x) = -f_{\theta}(x)$
- How to sample?
- If data continuous, use gradient-based samplers!

$$x_{t+t} = x_t + \frac{\epsilon}{2} \nabla_x f_{\theta}(x) + \epsilon \eta, \qquad \eta \sim N(0, I)$$

- Let $E_{\theta}(x)$ be a deep neural network $E_{\theta}(x) = -f_{\theta}(x)$
- How to sample?
- If data continuous, use gradient-based samplers!

$$x_{t+t} = x_t + \frac{\epsilon}{2} \nabla_x f_{\theta}(x) + \epsilon \eta, \qquad \eta \sim N(0,I)$$

- High quality image generation
- Semi-supervised learning
- OOD
- Adversarial robustness

Du and Mordatch (2020)

- Let $E_{\theta}(x)$ be a deep neural network $E_{\theta}(x) = -f_{\theta}(x)$
- How to sample?
- If data discrete....?

- Let $E_{\theta}(x)$ be a deep neural network $E_{\theta}(x) = -f_{\theta}(x)$
- How to sample?

Tovt

- If data discrete....?
- Many important data discrete...how to sample?

IEXL	1		labu	
	1	Country -	Salesperson 🔻	
["The", "cat", "sat"]	3	UK	Gloucester	
	4	UK	Bromley	
["The", "dog", "sat"]	5	USA	Finchley	
	6	USA	Finchley	
["The", "dog", "ate"]	7	UK	Gillingham	
	8	USA	Finchley	
	9	USA	Callahan	
-	10	USA	Fuller	
	11	USA	Fuller	
-	12	USA	Coghill	
	13	USA	Finchley	
•	14	USΔ	Callahan	

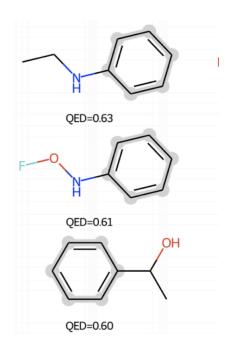
Tabular Data

1	Country 💌	Salesperson 💌	Order Date 💌	OrderID 💌	Units 🔽
2	USA	Fuller	1/01/2011	10392	13
3	UK	Gloucester	2/01/2011	10397	17
4	UK	Bromley	2/01/2011	10771	18
5	USA	Finchley	3/01/2011	10393	16
6	USA	Finchley	3/01/2011	10394	10
7	UK	Gillingham	3/01/2011	10395	9
8	USA	Finchley	6/01/2011	10396	7
9	USA	Callahan	8/01/2011	10399	17
10	USA	Fuller	8/01/2011	10404	7
11	USA	Fuller	9/01/2011	10398	11
12	USA	Coghill	9/01/2011	10403	18
13	USA	Finchley	10/01/2011	10401	7
14	USA	Callahan	10/01/2011	10402	11
15	UK	Rayleigh	13/01/2011	10406	15
16	USA	Callahan	14/01/2011	10408	10
17	USA	Farnham	14/01/2011	10409	19

Proteins

Ingraham and Marks (2017)

Molecules



In this work...

• New MCMC sampler for discrete distributions

• Simple approach which exploits common structure (gradients!!!)

• Increases efficiency, enables the Deep EBMs on discrete data

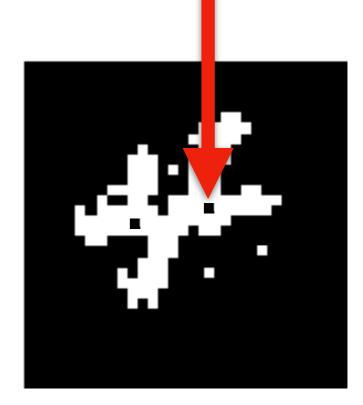
Discrete Sampling

We focus on sampling from $p(x) = \frac{e^{f(x)}}{Z}$ where

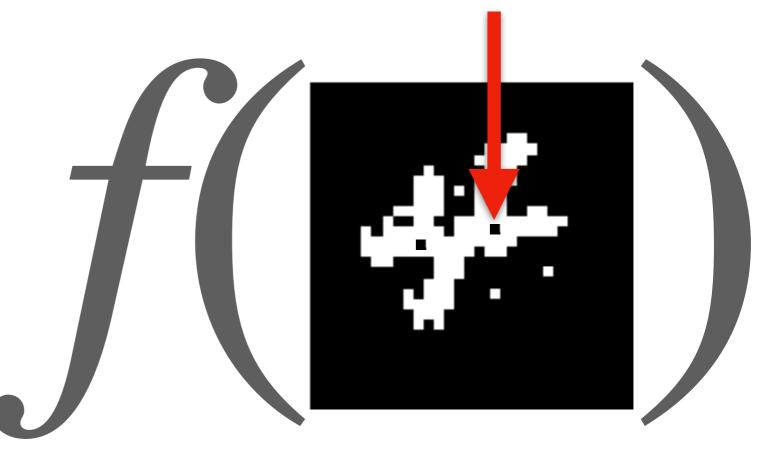
•
$$x \in \{0,1\}^D$$
 or $x \in \{0,\dots,K\}^D$

• Pick dim i then re-sample x[i] w/ all other dims fixed

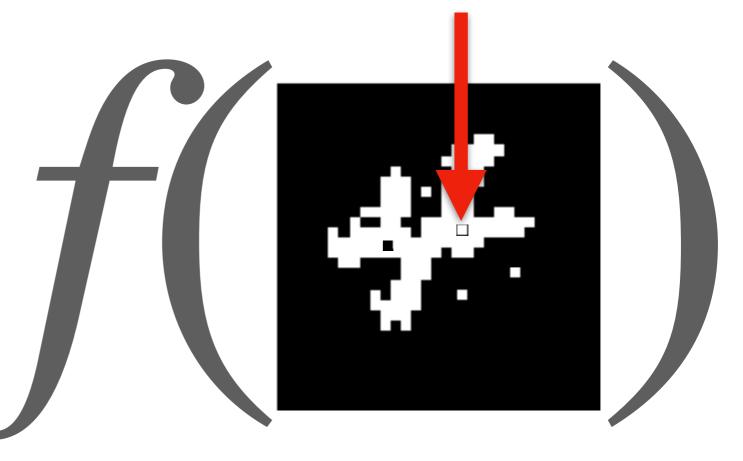
- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim



- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim
- We evaluate f(x)



- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim
- We evaluate f(x)
- ...and $f(x_{-i})$ (flip *i*-th bit)



- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim
- We evaluate f(x)
- ...and $f(x_{-i})$ (flip *i*-th bit)
- Set $x \leftarrow x_{-i}$ with probability:

 $\sigma(f(x_{-i}) - f(x))$

- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim
- We evaluate f(x)
- ...and $f(x_{-i})$ (flip *i*-th bit)
- Set $x \leftarrow x_{-i}$ with probability:

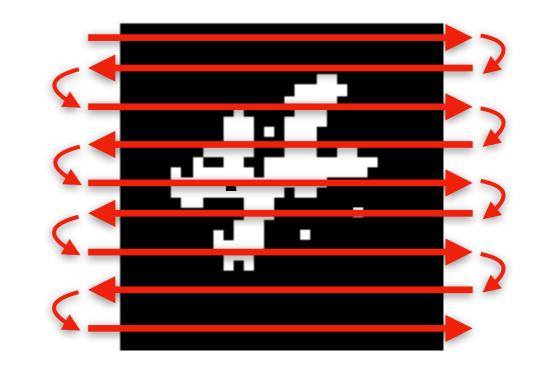
 $\sigma(f(x_{-i}) - f(x))$

• Must resample all dims

- Pick dim i then re-sample x[i] w/ all other dims fixed
- Consider this dim
- We evaluate f(x)
- ...and $f(x_{-i})$ (flip *i*-th bit)
- Set $x \leftarrow x_{-i}$ with probability:

 $\sigma(f(x_{-i}) - f(x))$

• Must resample all dims

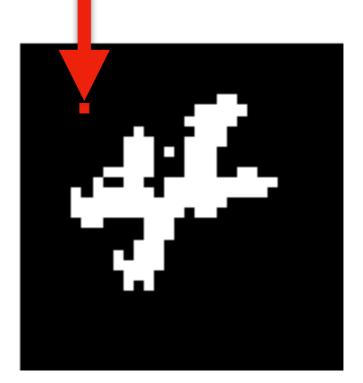


Typically fix an ordering and iterate through

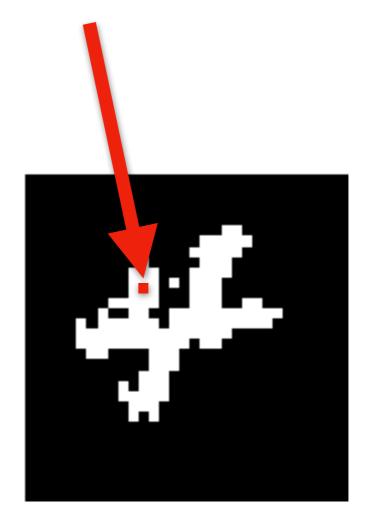
• Most pixels are black



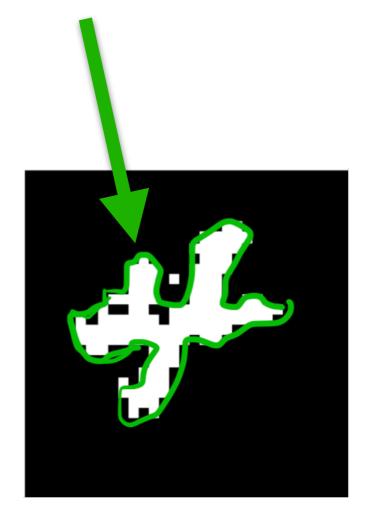
- Most pixels are black
- If we propose dim in background
- Will not change \rightarrow computation wasted



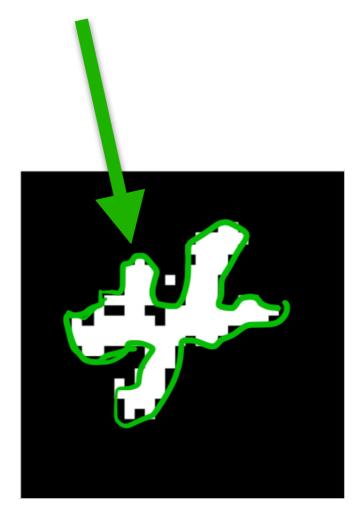
- Most pixels are black
- If we propose dim in background
- Will not change \rightarrow computation wasted
- If we propose dim in middle of digit
- Will not change \rightarrow computation wasted



- Most pixels are black
- If we propose dim in background
- Will not change \rightarrow computation wasted
- If we propose dim in middle of digit
- Will not change \rightarrow computation wasted
- Dims on edge will change

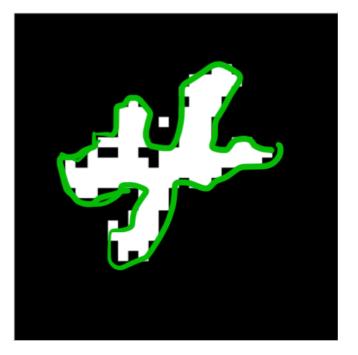


- Most pixels are black
- If we propose dim in background
- Will not change \rightarrow computation wasted
- If we propose dim in middle of digit
- Will not change \rightarrow computation wasted
- Dims on edge will change
- Small subset of all variables! 2% on MNIST



Choosing dimensions

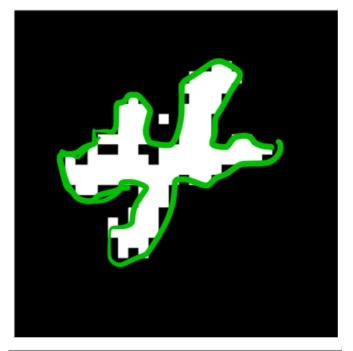
• Dims most likely to flip depend on input

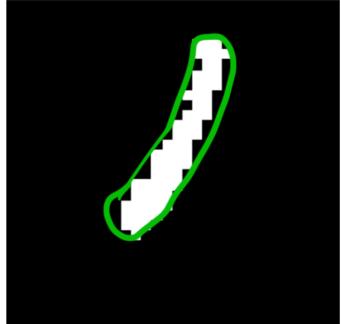


Choosing dimensions

- Dims most likely to flip depend on input
- Thus, sample dims from proposal q(i|x)
- To generate proposal, sample $i \sim q(i | x)$ and set $x_{-i} = flip_dim(x, i)$
- Accept x_{-i} with probability

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$





$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

• How to design q(i | x)? Acceptance prob:

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

• Want $f(x_{-i}) - f(x)$ high to proposals have high likelihood

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

- Want $f(x_{-i}) f(x)$ high to proposals have high likelihood
- Want q(i | x) to have high entropy

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

- Want $f(x_{-i}) f(x)$ high to proposals have high likelihood
- Want q(i | x) to have high entropy
- Need q(i | x) to balance these for good sampling

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

- Want $f(x_{-i}) f(x)$ high to proposals have high likelihood
- Want q(i | x) to have high entropy
- Need q(i | x) to balance these for good sampling

Idea: let
$$q_{\tau}(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{\tau}\right)}{Z(x)} = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{\tau}\right)}{\sum_{j=1}^{D} \exp\left(\frac{f(x_{-j}) - f(x)}{\tau}\right)}$$

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$

- Want $f(x_{-i}) f(x)$ high to proposals have high likelihood
- Want q(i | x) to have high entropy
- Need q(i | x) to balance these for good sampling

Idea: let
$$q_{\tau}(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{\tau}\right)}{Z(x)} = -\frac{\sum_{i=1}^{\tau} \frac{f(x_{-i}) - f(x)}{\tau}}{\sum_{i=1}^{\tau} \frac{f(x_{-i}) - f(x)}{\tau}}$$

Choosing $\boldsymbol{\tau}$

• Rewrite acceptance probability w.r.t $q_{\tau}(i | x)$

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i \mid x_{-i})}{q(i \mid x)}, 1\right\}$$
$$= \min\left\{\exp\left(\left(1 - \frac{2}{\tau}\right)(f(x_{-i}) - f(x))\right)\frac{Z(x_{-i})}{Z(x)}, 1\right\}$$

Choosing $\boldsymbol{\tau}$

• Rewrite acceptance probability w.r.t $q_{\tau}(i | x)$

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i \mid x_{-i})}{q(i \mid x)}, 1\right\}$$
$$= \min\left\{\exp\left(\left(1 - \frac{2}{\tau}\right)(f(x_{-i}) - f(x))\right)\frac{Z(x_{-i})}{Z(x)}, 1\right\}$$
$$\text{Set } \tau = 2 \text{ to cancel}$$

Choosing $\boldsymbol{\tau}$

• Rewrite acceptance probability w.r.t $q_2(i | x)$

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$
$$= \min\left\{\frac{Z(x_{-i})}{Z(x)}, 1\right\}$$

Choosing $\boldsymbol{\tau}$

• Rewrite acceptance probability w.r.t $q_2(i | x)$

Choosing $\boldsymbol{\tau}$

• Rewrite acceptance probability w.r.t $q_2(i | x)$

$$\min\left\{\exp(f(x_{-i}) - f(x))\frac{q(i | x_{-i})}{q(i | x)}, 1\right\}$$
$$= \min\left\{\frac{Z(x_{-i})}{Z(x)}, 1\right\}$$

Shown to be near optimal proposal which makes local moves (Zanella (2020))

Difference Functions

Optimal proposal

$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

Difference Functions

Optimal proposal

$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

- To sample we must compute $f(x_{-i}) f(x)$ for all $i \in [1, ..., D]$
- This means O(D) function evals

Difference Functions

Optimal proposal

$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

- To sample we must compute $f(x_{-i}) f(x)$ for all $i \in [1, ..., D]$
- This means O(D) function evals
- Slow if D big...

A surprisingly common structure

Bernoulli:
$$\log p(x) = \theta x - \log Z$$
Categorical: $\log p(x) = \theta^T x - \log Z$ Ising: $\log p(x) = x^T W x + b^T x - \log Z$ Potts: $\log p(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_i^T J_{ij} x_j - \log Z$ RBM: $\log p(x) = \sum_{i=1}^{D} \operatorname{softplus}(Wx + b)_i + c^T x$ HMM: $\log p(x|y) = \sum_{t=1}^{T} x_t A x_{t-1} + \frac{(w^T x_t - y_t)^2}{\sigma^2}$ Deep EBM: $\log p(x) = f_{\theta}(x) - \log Z$

A surprisingly common structure

Bernoulli:
$$\log p(x) = \theta x - \log Z$$
These are all continuous,
differentiable functions of
real-valued inputs!Categorical: $\log p(x) = \theta^T x - \log Z$ These are all continuous,
differentiable functions of
real-valued inputs!Ising: $\log p(x) = x^T W x + b^T x - \log Z$ Discrete structure is
created by restricting
input to $\{0,1\} \subset R$ Potts: $\log p(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_i^T J_{ij} x_j - \log Z$ Discrete structure is
created by restricting
input to $\{0,1\} \subset R$ HMM: $\log p(x) = \sum_{i=1}^{T} x_i A x_{i-1} + \frac{(w^T x_i - y_i)^2}{\sigma^2}$ Discrete structure is
created by restricting
input to $\{0,1\} \subset R$ Deep EBM: $\log p(x) = f_{\theta}(x) - \log Z$ Discrete structure is $2 = f_{\theta}(x) - \log Z$

Exploiting a surprisingly common structure

• We can use Taylor-series to estimate

$$f(x_{-i}) \approx (x_{-i} - x)^T \nabla_x f(x)$$

Exploiting a surprisingly common structure

• We can use Taylor-series to estimate

$$f(x_{-i}) \approx (x_{-i} - x)^T \nabla_x f(x)$$

• For binary data, we estimate $f(x_{-i}) - f(x)$ for all *i*:

$$\tilde{d}(x) = -(2x-1) \odot \nabla_x f(x)$$

- Where $\tilde{d}(x)[i] = f(x_{-i}) f(x)$
- Similar expression for categorical data

Gibbs With Gradients

- We propose a new sampler for discrete distributions
- We do Metropolis-Hastings with a proposal q(i | x)
- The proposal approximates:

$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

Gibbs With Gradients

- We propose a new sampler for discrete distributions
- We do Metropolis-Hastings with a proposal q(i | x)
- The proposal approximates:

$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

• Using a Taylor-series

$$q(i | x) = \frac{\exp\left(\frac{(x_{-i} - x)^T \nabla_x f(x)}{2}\right)}{\tilde{Z}(x)}$$

• Using O(1) function evaluations!

Gibbs With Gradients

- We propose a new sampler for discrete distributions
- We do Metropolis-Hastings with a proposal q(i | x)
- The proposal approximates:

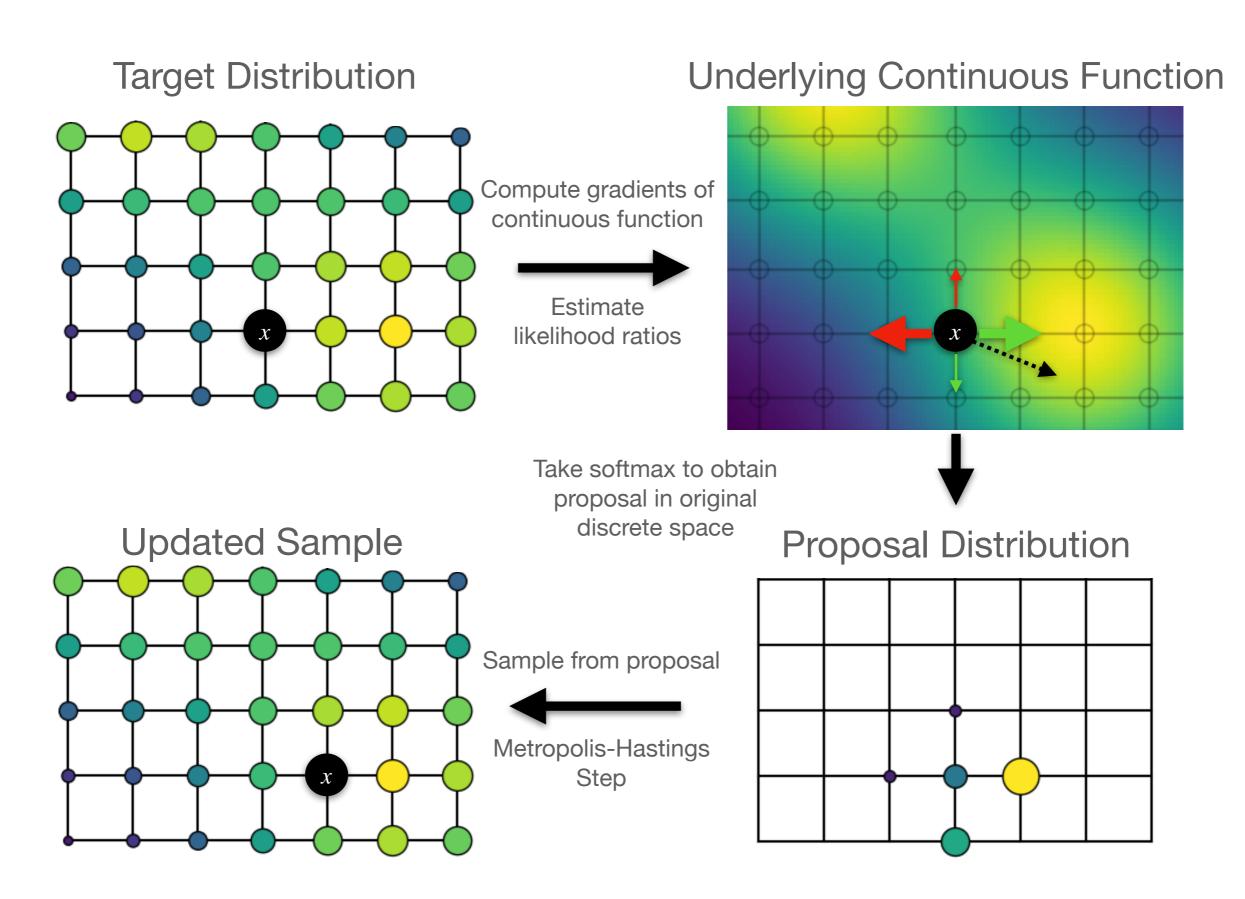
$$q(i \mid x) = \frac{\exp\left(\frac{f(x_{-i}) - f(x)}{2}\right)}{Z(x)}$$

• Using a Taylor-series

$$q(i | x) = \frac{\exp\left(\frac{(x_{-i} - x)^T \nabla_x f(x)}{2}\right)}{\tilde{Z}(x)}$$

- Using O(1) function evaluations!
- Simple, efficient, no hyper-parameters(!!!!!)

Gibbs With Gradients (visually)



Gibbs With Gradients (pseudo-code)

Algorithm 1 Gibbs With Gradients

Input: unnormalized log-prob $f(\cdot)$, current sample xCompute $\tilde{d}(x)$ {Eq. 3 if binary, Eq. 4 if categorical.} Compute q(i|x) =Categorical $\left(\text{Softmax} \left(\frac{\tilde{d}(x)}{2} \right) \right)$ Sample $i \sim q(i|x)$ x' = flipdim(x, i)Compute q(i|x') =Categorical $\left(\text{Softmax} \left(\frac{\tilde{d}(x')}{2} \right) \right)$ Accept with probability:

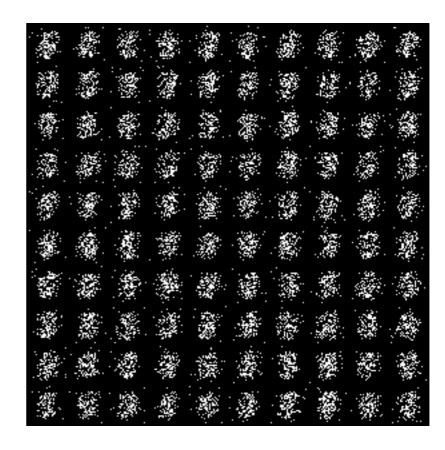
$$\min\left(\exp(f(x') - f(x))\frac{q(i|x')}{q(i|x)}, 1\right)$$

RBM Sampling

GWG

									ALC: NO.
~				2			A.		
		315. 1823		1	14 A A A A A A A A A A A A A A A A A A A			100	
			A						
					10	1			200
					1. 1	÷.			
	and the second								
	and the second s		1						
						N.			
				1999 1999		1	123		Sec.

Gibbs

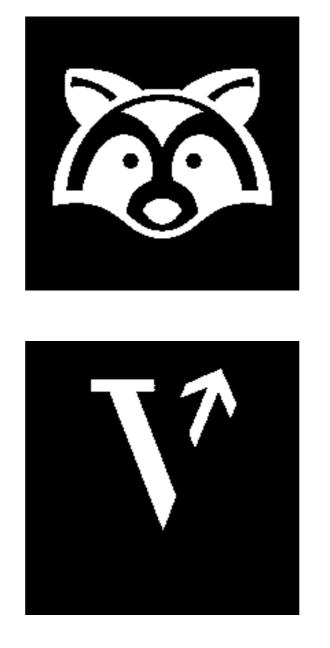


Ising Denoising

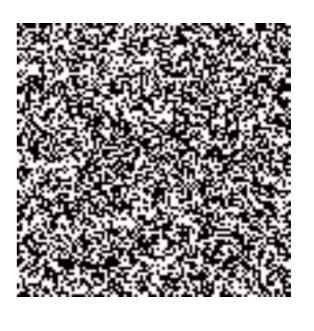
100x100 = 10,000 Variables!

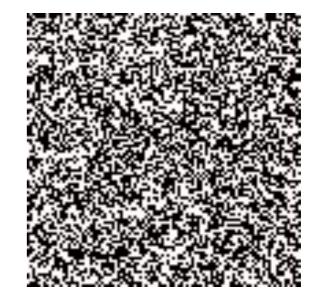
GWG

Ground Truth



Gibbs



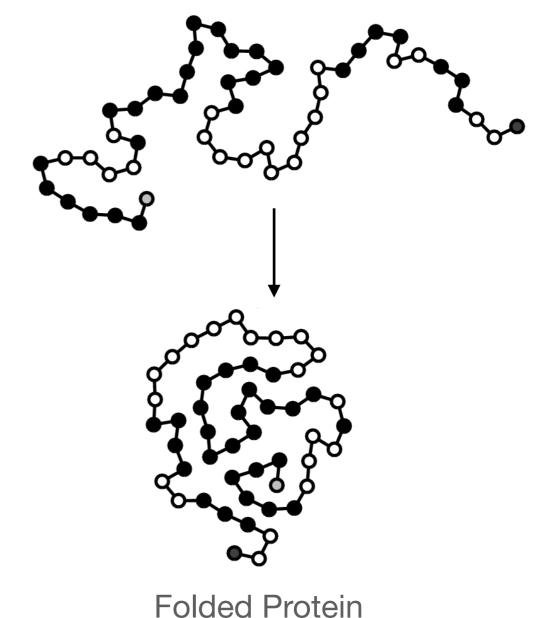


Training EBMs

- Recall $\nabla_{\theta} \log p(x) = -\nabla_{\theta} E_{\theta}(x) + \mathbf{E}_{p_{\theta}(x)} [\nabla_{\theta} E_{\theta}(x)]$
- So MCMC sampling can enable parameter inference for EBMs

- Protein Contact Prediction with Potts models
- Deep EBMs for discrete images

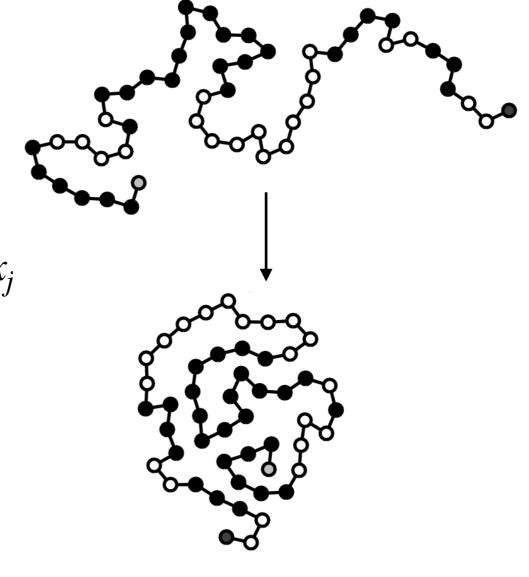
- A protein x is a sequences of D amino acids $x_i \in \{1, \dots, 20\}$
- Want to know which x_i and x_j contact when folded



- A protein x is a sequences of D amino acids $x_i \in \{1, \dots, 20\}$
- Want to know which x_i and x_j contact when folded
- Train Potts model:

$$E_{\theta}(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_j^T J_{ij} x_j$$

Amino Acid Sequence

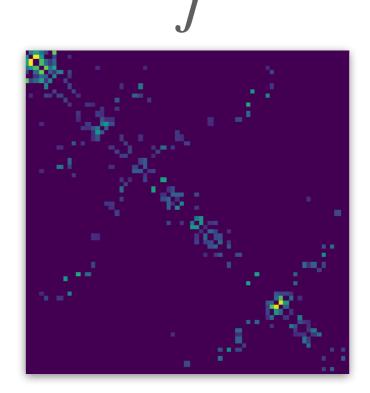


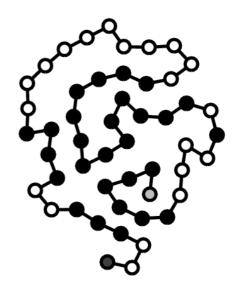
Folded Protein

- A protein x is a sequences of D amino acids $x_i \in \{1, \dots, 20\}$
- Want to know which x_i and x_j contact when folded
- Train Potts model:

$$E_{\theta}(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_j^T J_{ij} x_j$$

• Model J matrix learns interactions



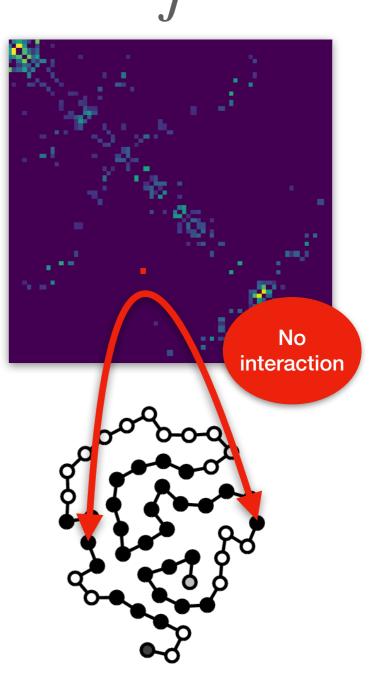


Folded Protein

- A protein x is a sequences of D amino acids $x_i \in \{1, \dots, 20\}$
- Want to know which x_i and x_j contact when folded
- Train Potts model:

$$E_{\theta}(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_j^T J_{ij} x_j$$

- Model J matrix learns interactions
- Make predictions with interaction strength

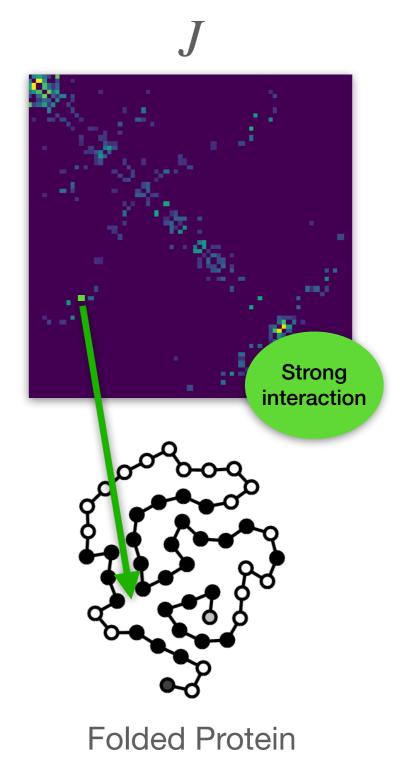


Folded Protein

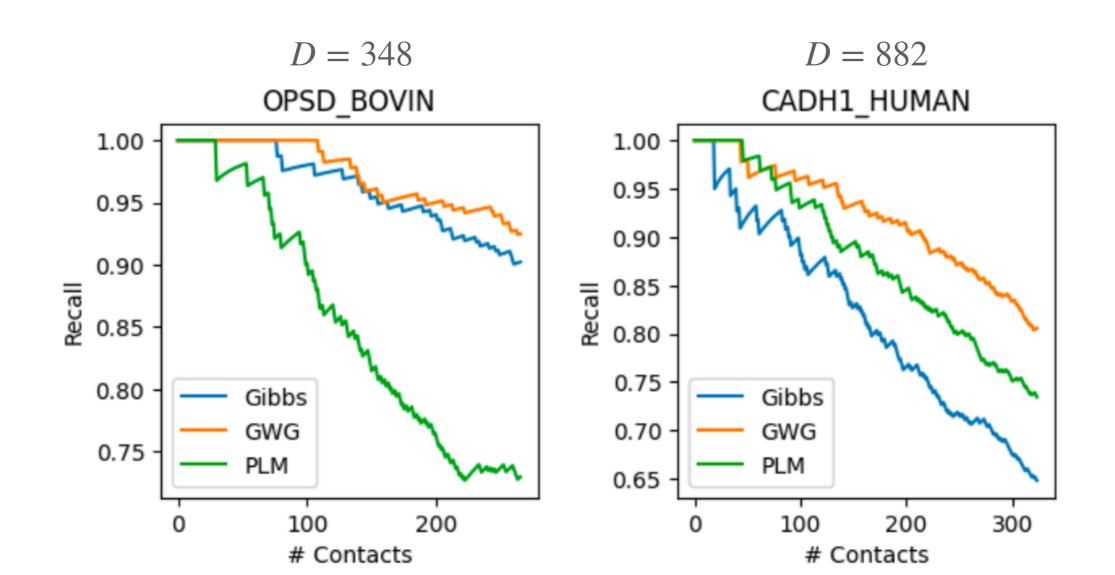
- A protein x is a sequences of D amino acids $x_i \in \{1, \dots, 20\}$
- Want to know which x_i and x_j contact when folded
- Train Potts model:

$$E_{\theta}(x) = \sum_{i=1}^{D} h_i^T x_i + \sum_{ij} x_j^T J_{ij} x_j$$

- Model J matrix learns interactions
- Make predictions with interaction strength



- Compare:
 - Maximum likelihood using Gibbs, GWG
 - Pseudo-likelihood Maximization (PLM) (standard practice)



Deep EBMs for Discrete Data

- Recent successful EBMs use neural network energy: $p_{\theta}(x) = \frac{e^{f_{\theta}(x)}}{Z}$
- We train Deep ResNet EBMs on binary and categorical image data
- Binary pixel values are 0, 1
- For categorical each pixel is 1-of-256 way categorical
 - This means 256 function evals for 1 step of Gibbs!

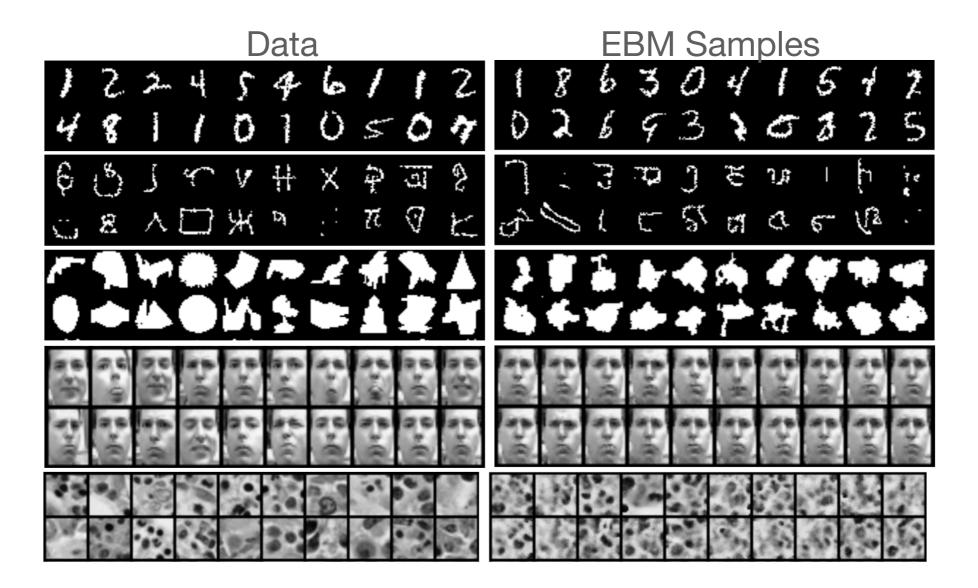
Deep EBMs for Discrete Data

- Train with PCD
- Outperforms VAEs, RBM, and Deep belief net in log-likelihood
- GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train because of high cost per-iteration

Data Type	Dataset	VAE (MLP)	VAE (Conv)	EBM (GWG)	EBM (Gibbs)	RBM	DBN
Binary	Static MNIST	-86.05	-82.41	-80.01	-117.17	-86.39	-85.67
Dillary	Dynamic MNIST	-82.42	-80.40	-80.51	-121.19		
(lag litelihand A)	Omniglot	-103.52	-97.65	-94.72	-142.06	-100.47	-100.78
(log-likelihood ↑)	Caltech Silhouettes	-112.08	-106.35	-96.20	-163.50		
Categorical	Frey Faces	4.61	4.49	4.65			
(bits/dim \downarrow)	Histopathology	5.82	5.59	5.08			

Deep EBMs for Discrete Data

- Train with PCD
- Outperforms VAEs, RBM, and Deep belief net in log-likelihood
- GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train because of high cost per-iteration



Additional results

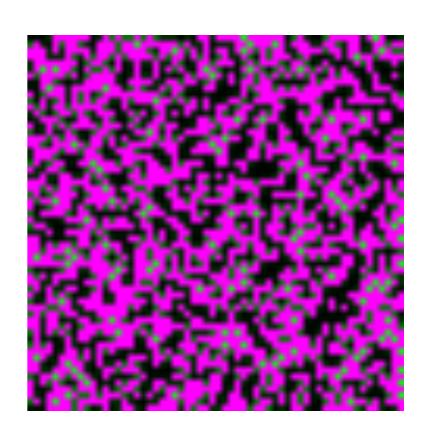
- See paper for additional results on:
 - Text EBMs
 - Structure inference in Ising models
 - Additional sampling experiments

Next Steps

- Improvements for large categoricals (text)
- New approximations when gradients can't be computed
- Apply gradients to:
 - Discrete Score Matching
 - Discrete Stein Discrepancies
- Integrate into probabilistic programming frameworks

Thanks!

- Thanks for having me, much love to my co-authors!
- Code available: <u>github.com/wgrathwohl/GWG_release</u>
- You can find me at
 - @wgrathwohl or
 - wgrathwohl@cs.toronto.edu



Kevin Swersky

Milad Hashemi

David Duvenaud

Chris Maddison