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Energy-Based Models

• An energy-based model (EBM) is a probability model in the following 
form:  

       


• Where  fully specifies the model so  does not need 
to be modelled 

pθ(x) =
e−Eθ(x)

Z(θ)
Z(θ) = ∫x

e−Eθ(x)dx

Eθ(x) : χ → R Z(θ)



Training EBMs
• To maximize likelihood we must compute 

 log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx
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Training EBMs
• To maximize likelihood we must compute 

 

 

• Which is intractable 

• The gradient however is simpler 

 

• Draw samples to estimate gradient 

• We can use this to train

log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]

Use MCMC!
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Recent Success!
• Let  be a deep neural network  

• How to sample? 

• If data continuous, use gradient-based samplers! 

 

• High quality image generation 
• Semi-supervised learning 
• OOD 
• Adversarial robustness

Eθ(x) Eθ(x) = − fθ(x)

xt+t = xt +
ϵ
2

∇x fθ(x) + ϵη, η ∼ N(0,I)

Du and Mordatch (2020)
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• Let  be a deep neural network  

• How to sample? 

• If data discrete….?
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Recent Success!
• Let  be a deep neural network  

• How to sample? 

• If data discrete….? 

• Many important data discrete…how to sample?

Eθ(x) Eθ(x) = − fθ(x)

Text Tabular Data Proteins Molecules 

[“The”,  “cat”, “sat”]

[“The”, “dog”, “sat”]

[“The”, “dog”, “ate”]


.


.


.


Hataya et al. (2021)

Ingraham and Marks (2017)



In this work…
• New MCMC sampler for discrete distributions 

• Simple approach which exploits common structure (gradients!!!) 

• Increases efficiency, enables the Deep EBMs on discrete data 



Discrete Sampling

• We focus on sampling from  where  

•  or 

p(x) =
ef(x)

Z

x ∈ {0,1}D x ∈ {0,…, K}D
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Gibbs Sampling
• Pick dim  then re-sample  w/ all other dims fixed 

• Consider this dim 

• We evaluate  

• …and  (flip -th bit) 

• Set  with probability: 

                        

• Must resample all dims 

i x[i]

f(x)

f(x−i) i

x ← x−i

σ( f(x−i) − f(x))
Typically fix an ordering 

and iterate through
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• Most pixels are black 

• If we propose dim in background 
• Will not change  computation wasted 

• If we propose dim in middle of digit 
• Will not change  computation wasted 

• Dims on edge will change 

• Small subset of all variables! 2% on MNIST 

→

→

Some dims are better…



Choosing dimensions

• Dims most likely to flip depend on input 



• Dims most likely to flip depend on input 

• Thus, sample dims from proposal  

• To generate proposal, sample  and 
set  

• Accept  with probability 

 

q(i |x)

i ∼ q(i |x)
x−i = flip_dim(x, i)

x−i

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}

Choosing dimensions
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Proposals for Discrete Sampling
• How to design ? Acceptance prob:  

 

• Want  high to proposals have high likelihood 

• Want  to have high entropy 

• Need  to balance these for good sampling 
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Proposals for Discrete Sampling
• How to design ? Acceptance prob:  

 

• Want  high to proposals have high likelihood 

• Want  to have high entropy 

• Need  to balance these for good sampling 

•
Idea: let 

q(i |x)

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

q(i |x)

q(i |x)

qτ(i |x) =
exp ( f(x−i) − f(x)

τ )
Z(x)

=
exp ( f(x−i) − f(x)

τ )
∑D

j=1 exp ( f(x−j) − f(x)

τ )

Tempered softmax over 

 

For possible 

f(x−i) − f(x)
τ

i



Choosing τ

• Rewrite acceptance probability w.r.t  

 

qτ(i |x)

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min {exp ((1 −

2
τ )( f(x−i) − f(x))) Z(x−i)

Z(x)
,1}



• Rewrite acceptance probability w.r.t  

 

qτ(i |x)

min {exp( f(x−i) − f(x))
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q(i |x)

,1}
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2
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Choosing τ

Set  to cancelτ = 2



Choosing τ

• Rewrite acceptance probability w.r.t  

 

q2(i |x)

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}



Choosing τ

Should be 
near 1

• Rewrite acceptance probability w.r.t  

 

q2(i |x)

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}



Choosing τ

• Rewrite acceptance probability w.r.t  

 

 

• Shown to be near optimal proposal which makes local moves (Zanella 
(2020))

q2(i |x)

min {exp( f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}



Difference Functions

• Optimal proposal 

q(i |x) =
exp ( f(x−i) − f(x)

2 )
Z(x)



Difference Functions

• Optimal proposal 

 

• To sample we must compute  for all  

• This means  function evals

q(i |x) =
exp ( f(x−i) − f(x)

2 )
Z(x)

f(x−i) − f(x) i ∈ [1,…, D]

O(D)



Difference Functions

• Optimal proposal 

 

• To sample we must compute  for all  

• This means  function evals 

• Slow if  big…

q(i |x) =
exp ( f(x−i) − f(x)

2 )
Z(x)

f(x−i) − f(x) i ∈ [1,…, D]

O(D)

D



A surprisingly common structure

Bernoulli:              

Categorical:         

Ising:                     

Potts:                    

RBM:                     

HMM:                    

Deep EBM:           

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z



A surprisingly common structure

Bernoulli:              

Categorical:         

Ising:                     

Potts:                    

RBM:                     

HMM:                    

Deep EBM:           

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

These are all continuous, 
differentiable functions of 

real-valued inputs!

Discrete structure is 
created by restricting 
input to {0,1} ⊂ R



Exploiting a surprisingly common structure

• We can use Taylor-series to estimate 

f(x−i) ≈ (x−i − x)T ∇x f(x)



Exploiting a surprisingly common structure

• We can use Taylor-series to estimate 

 

• For binary data, we estimate  for all : 

 

• Where  

• Similar expression for categorical data

f(x−i) ≈ (x−i − x)T ∇x f(x)

f(x−i) − f(x) i

d̃(x) = − (2x − 1) ⊙ ∇x f(x)

d̃(x)[i] = f(x−i) − f(x)



Gibbs With Gradients

• We propose a new sampler for discrete distributions 

• We do Metropolis-Hastings with a proposal  

• The proposal approximates: 

q(i |x)

q(i |x) =
exp ( f(x−i) − f(x)

2 )
Z(x)
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• Using  function evaluations!
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Gibbs With Gradients

• We propose a new sampler for discrete distributions 

• We do Metropolis-Hastings with a proposal  

• The proposal approximates: 

 

• Using a Taylor-series 

 

• Using  function evaluations! 

• Simple, efficient, no hyper-parameters(!!!!!)

q(i |x)

q(i |x) =
exp ( f(x−i) − f(x)

2 )
Z(x)

q(i |x) =
exp ( (x−i − x)T ∇x f(x)

2 )
Z̃(x)

O(1)



Underlying Continuous Function

Compute gradients of 

continuous function


Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original


discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal


Metropolis-Hastings

Step

Gibbs With Gradients (visually)



Gibbs With Gradients (pseudo-code)



RBM Sampling

GWG Gibbs



Ising Denoising

GWG GibbsGround Truth

100x100 = 10,000 Variables!



Training EBMs
• Recall  

• So MCMC sampling can enable parameter inference for EBMs 

• Protein Contact Prediction with Potts models 

• Deep EBMs for discrete images

∇θlog p(x) = − ∇θEθ(x) + Epθ(x)[∇θEθ(x)]



Protein Contact Prediction
• A protein  is a sequences of  amino acids 

 

• Want to know which  and  contact when 
folded

x D
xi ∈ {1,…,20}

xi xj

Amino Acid Sequence

Folded Protein
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Protein Contact Prediction
• A protein  is a sequences of  amino acids 

 

• Want to know which  and  contact when 
folded 

• Train Potts model:  

 

• Model  matrix learns interactions

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J

J

Folded Protein



Protein Contact Prediction
J

Folded Protein

No 
interaction

• A protein  is a sequences of  amino acids 
 

• Want to know which  and  contact when 
folded 

• Train Potts model:  

 

• Model  matrix learns interactions 

• Make predictions with interaction strength

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J



Protein Contact Prediction
J

Folded Protein

• A protein  is a sequences of  amino acids 
 

• Want to know which  and  contact when 
folded 

• Train Potts model:  

 

• Model  matrix learns interactions 

• Make predictions with interaction strength

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J

Strong 
interaction



• Compare: 

• Maximum likelihood using Gibbs, GWG 

• Pseudo-likelihood Maximization (PLM) (standard practice)

Protein Contact Prediction

D = 348 D = 882



Deep EBMs for Discrete Data

• Recent successful EBMs use neural network energy:  

• We train Deep ResNet EBMs on binary and categorical image data 

• Binary pixel values are 0, 1 

• For categorical each pixel is 1-of-256 way categorical 

• This means 256 function evals for 1 step of Gibbs!

pθ(x) =
efθ(x)

Z



Deep EBMs for Discrete Data
• Train with PCD 

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood 

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train 
because of high cost per-iteration



Deep EBMs for Discrete Data
• Train with PCD 

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood 

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train 
because of high cost per-iteration

Data EBM Samples



Additional results
• See paper for additional results on: 

• Text EBMs 

• Structure inference in Ising models 

• Additional sampling experiments



Next Steps
• Improvements for large categoricals (text) 

• New approximations when gradients can’t be computed 

• Apply gradients to:  

• Discrete Score Matching 

• Discrete Stein Discrepancies 

• Integrate into probabilistic programming frameworks



Milad Hashemi

Thanks!

Kevin Swersky David Duvenaud

• Thanks for having me, much love to my co-authors!


• Code available: github.com/wgrathwohl/GWG_release


• You can find me at


• @wgrathwohl or


• wgrathwohl@cs.toronto.edu

Chris Maddison

http://github.com/wgrathwohl/GWG_release

