
Will Grathwohl
Kevin Swersky
Milad Hashemi
David Duvenaud
Chris J. Maddison

Oops I took a gradient!
Scalable sampling for discrete distributions
ICML 2021

Energy-Based Models

• An energy-based model (EBM) is a probability model in the following
form:

• Where fully specifies the model so does not need
to be modelled

pθ(x) =
e−Eθ(x)

Z(θ)
Z(θ) = ∫x

e−Eθ(x)dx

Eθ(x) : χ → R Z(θ)

Training EBMs
• To maximize likelihood we must compute

 log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

Training EBMs
• To maximize likelihood we must compute

• Which is intractable

log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

Training EBMs
• To maximize likelihood we must compute

• Which is intractable

• The gradient however is simpler

log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]

Training EBMs
• To maximize likelihood we must compute

• Which is intractable

• The gradient however is simpler

• Draw samples to estimate gradient

• We can use this to train

log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]

Training EBMs
• To maximize likelihood we must compute

• Which is intractable

• The gradient however is simpler

• Draw samples to estimate gradient

• We can use this to train

log pθ(x) = − Eθ(x) − log Z(θ)

= − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]

Use MCMC!

Recent Success!
• Let be a deep neural network

• How to sample?

Eθ(x) Eθ(x) = − fθ(x)

Recent Success!
• Let be a deep neural network

• How to sample?

• If data continuous, use gradient-based samplers!

Eθ(x) Eθ(x) = − fθ(x)

xt+t = xt +
ϵ
2

∇x fθ(x) + ϵη, η ∼ N(0,I)

Recent Success!
• Let be a deep neural network

• How to sample?

• If data continuous, use gradient-based samplers!

• High quality image generation
• Semi-supervised learning
• OOD
• Adversarial robustness

Eθ(x) Eθ(x) = − fθ(x)

xt+t = xt +
ϵ
2

∇x fθ(x) + ϵη, η ∼ N(0,I)

Du and Mordatch (2020)

Recent Success!
• Let be a deep neural network

• How to sample?

• If data discrete….?

Eθ(x) Eθ(x) = − fθ(x)

Recent Success!
• Let be a deep neural network

• How to sample?

• If data discrete….?

• Many important data discrete…how to sample?

Eθ(x) Eθ(x) = − fθ(x)

Text Tabular Data Proteins Molecules

[“The”, “cat”, “sat”]

[“The”, “dog”, “sat”]

[“The”, “dog”, “ate”]

.

.

.

Hataya et al. (2021)

Ingraham and Marks (2017)

In this work…
• New MCMC sampler for discrete distributions

• Simple approach which exploits common structure (gradients!!!)

• Increases efficiency, enables the Deep EBMs on discrete data

Discrete Sampling

• We focus on sampling from where

• or

p(x) =
ef(x)

Z

x ∈ {0,1}D x ∈ {0,…, K}D

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed i x[i]

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

i x[i]

f()
Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

• We evaluate

i x[i]

f(x)

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

• We evaluate

• …and (flip -th bit)

i x[i]

f(x)

f(x−i) i f()

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

• We evaluate

• …and (flip -th bit)

• Set with probability:

i x[i]

f(x)

f(x−i) i

x ← x−i

σ(f(x−i) − f(x))

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

• We evaluate

• …and (flip -th bit)

• Set with probability:

• Must resample all dims

i x[i]

f(x)

f(x−i) i

x ← x−i

σ(f(x−i) − f(x))

Gibbs Sampling
• Pick dim then re-sample w/ all other dims fixed

• Consider this dim

• We evaluate

• …and (flip -th bit)

• Set with probability:

• Must resample all dims

i x[i]

f(x)

f(x−i) i

x ← x−i

σ(f(x−i) − f(x))
Typically fix an ordering

and iterate through

Some dims are better…

• Most pixels are black

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted →

Some dims are better…

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted

• If we propose dim in middle of digit
• Will not change computation wasted

→

→

Some dims are better…

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted

• If we propose dim in middle of digit
• Will not change computation wasted

• Dims on edge will change

→

→

Some dims are better…

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted

• If we propose dim in middle of digit
• Will not change computation wasted

• Dims on edge will change

• Small subset of all variables! 2% on MNIST

→

→

Some dims are better…

Choosing dimensions

• Dims most likely to flip depend on input

• Dims most likely to flip depend on input

• Thus, sample dims from proposal

• To generate proposal, sample and
set

• Accept with probability

q(i |x)

i ∼ q(i |x)
x−i = flip_dim(x, i)

x−i

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}

Choosing dimensions

Proposals for Discrete Sampling
• How to design ? Acceptance prob: q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}

Proposals for Discrete Sampling
• How to design ? Acceptance prob:

• Want high to proposals have high likelihood

q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

Proposals for Discrete Sampling
• How to design ? Acceptance prob:

• Want high to proposals have high likelihood

• Want to have high entropy

q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

q(i |x)

Proposals for Discrete Sampling
• How to design ? Acceptance prob:

• Want high to proposals have high likelihood

• Want to have high entropy

• Need to balance these for good sampling

q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

q(i |x)

q(i |x)

Proposals for Discrete Sampling
• How to design ? Acceptance prob:

• Want high to proposals have high likelihood

• Want to have high entropy

• Need to balance these for good sampling

•
Idea: let

q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

q(i |x)

q(i |x)

qτ(i |x) =
exp (f(x−i) − f(x)

τ)
Z(x)

=
exp (f(x−i) − f(x)

τ)
∑D

j=1 exp (f(x−j) − f(x)

τ)

Proposals for Discrete Sampling
• How to design ? Acceptance prob:

• Want high to proposals have high likelihood

• Want to have high entropy

• Need to balance these for good sampling

•
Idea: let

q(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
f(x−i) − f(x)

q(i |x)

q(i |x)

qτ(i |x) =
exp (f(x−i) − f(x)

τ)
Z(x)

=
exp (f(x−i) − f(x)

τ)
∑D

j=1 exp (f(x−j) − f(x)

τ)

Tempered softmax over

For possible

f(x−i) − f(x)
τ

i

Choosing τ

• Rewrite acceptance probability w.r.t

qτ(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min {exp ((1 −

2
τ)(f(x−i) − f(x))) Z(x−i)

Z(x)
,1}

• Rewrite acceptance probability w.r.t

qτ(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min {exp ((1 −

2
τ)(f(x−i) − f(x))) Z(x−i)

Z(x)
,1}

Choosing τ

Set to cancelτ = 2

Choosing τ

• Rewrite acceptance probability w.r.t

q2(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}

Choosing τ

Should be
near 1

• Rewrite acceptance probability w.r.t

q2(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}

Choosing τ

• Rewrite acceptance probability w.r.t

• Shown to be near optimal proposal which makes local moves (Zanella
(2020))

q2(i |x)

min {exp(f(x−i) − f(x))
q(i |x−i)
q(i |x)

,1}
= min { Z(x−i)

Z(x)
,1}

Difference Functions

• Optimal proposal

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

Difference Functions

• Optimal proposal

• To sample we must compute for all

• This means function evals

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

f(x−i) − f(x) i ∈ [1,…, D]

O(D)

Difference Functions

• Optimal proposal

• To sample we must compute for all

• This means function evals

• Slow if big…

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

f(x−i) − f(x) i ∈ [1,…, D]

O(D)

D

A surprisingly common structure

Bernoulli:

Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

A surprisingly common structure

Bernoulli:

Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

These are all continuous,
differentiable functions of

real-valued inputs!

Discrete structure is
created by restricting
input to {0,1} ⊂ R

Exploiting a surprisingly common structure

• We can use Taylor-series to estimate

f(x−i) ≈ (x−i − x)T ∇x f(x)

Exploiting a surprisingly common structure

• We can use Taylor-series to estimate

• For binary data, we estimate for all :

• Where

• Similar expression for categorical data

f(x−i) ≈ (x−i − x)T ∇x f(x)

f(x−i) − f(x) i

d̃(x) = − (2x − 1) ⊙ ∇x f(x)

d̃(x)[i] = f(x−i) − f(x)

Gibbs With Gradients

• We propose a new sampler for discrete distributions

• We do Metropolis-Hastings with a proposal

• The proposal approximates:

q(i |x)

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

Gibbs With Gradients

• We propose a new sampler for discrete distributions

• We do Metropolis-Hastings with a proposal

• The proposal approximates:

• Using a Taylor-series

• Using function evaluations!

q(i |x)

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

q(i |x) =
exp ((x−i − x)T ∇x f(x)

2)
Z̃(x)

O(1)

Gibbs With Gradients

• We propose a new sampler for discrete distributions

• We do Metropolis-Hastings with a proposal

• The proposal approximates:

• Using a Taylor-series

• Using function evaluations!

• Simple, efficient, no hyper-parameters(!!!!!)

q(i |x)

q(i |x) =
exp (f(x−i) − f(x)

2)
Z(x)

q(i |x) =
exp ((x−i − x)T ∇x f(x)

2)
Z̃(x)

O(1)

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal

Metropolis-Hastings

Step

Gibbs With Gradients (visually)

Gibbs With Gradients (pseudo-code)

RBM Sampling

GWG Gibbs

Ising Denoising

GWG GibbsGround Truth

100x100 = 10,000 Variables!

Training EBMs
• Recall

• So MCMC sampling can enable parameter inference for EBMs

• Protein Contact Prediction with Potts models

• Deep EBMs for discrete images

∇θlog p(x) = − ∇θEθ(x) + Epθ(x)[∇θEθ(x)]

Protein Contact Prediction
• A protein is a sequences of amino acids

• Want to know which and contact when
folded

x D
xi ∈ {1,…,20}

xi xj

Amino Acid Sequence

Folded Protein

Protein Contact Prediction
• A protein is a sequences of amino acids

• Want to know which and contact when
folded

• Train Potts model:

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

Amino Acid Sequence

Folded Protein

Protein Contact Prediction
• A protein is a sequences of amino acids

• Want to know which and contact when
folded

• Train Potts model:

• Model matrix learns interactions

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J

J

Folded Protein

Protein Contact Prediction
J

Folded Protein

No
interaction

• A protein is a sequences of amino acids

• Want to know which and contact when
folded

• Train Potts model:

• Model matrix learns interactions

• Make predictions with interaction strength

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J

Protein Contact Prediction
J

Folded Protein

• A protein is a sequences of amino acids

• Want to know which and contact when
folded

• Train Potts model:

• Model matrix learns interactions

• Make predictions with interaction strength

x D
xi ∈ {1,…,20}

xi xj

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj

J

Strong
interaction

• Compare:

• Maximum likelihood using Gibbs, GWG

• Pseudo-likelihood Maximization (PLM) (standard practice)

Protein Contact Prediction

D = 348 D = 882

Deep EBMs for Discrete Data

• Recent successful EBMs use neural network energy:

• We train Deep ResNet EBMs on binary and categorical image data

• Binary pixel values are 0, 1

• For categorical each pixel is 1-of-256 way categorical

• This means 256 function evals for 1 step of Gibbs!

pθ(x) =
efθ(x)

Z

Deep EBMs for Discrete Data
• Train with PCD

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Deep EBMs for Discrete Data
• Train with PCD

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Data EBM Samples

Additional results
• See paper for additional results on:

• Text EBMs

• Structure inference in Ising models

• Additional sampling experiments

Next Steps
• Improvements for large categoricals (text)

• New approximations when gradients can’t be computed

• Apply gradients to:

• Discrete Score Matching

• Discrete Stein Discrepancies

• Integrate into probabilistic programming frameworks

Milad Hashemi

Thanks!

Kevin Swersky David Duvenaud

• Thanks for having me, much love to my co-authors!

• Code available: github.com/wgrathwohl/GWG_release

• You can find me at

• @wgrathwohl or

• wgrathwohl@cs.toronto.edu

Chris Maddison

http://github.com/wgrathwohl/GWG_release

