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In traditional neural network optimization, each connection is assigned 1 continuous 
weight which is updated in each iteration

Motivation
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Can selection from a fixed set of random weights be competitive with traditional 
continuous weight optimization?



Introducing Slot Machines
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We present a family of neural networks called “slot machines” where each reel (connection) contains 
a fixed set of symbols (random values), and a backpropagation algorithm that “spins” the reels to 
seek “winning” combinations, i.e., selections of values that minimize the given loss. 



Key Idea: select 1 weight from  fixed random values per connection based on associated scoresK

Slot Machines
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Using multiple weight values per connection increases the chances of finding a combination of 
weights that is competitive

Initialization: 
➡  Assign  random values to each connection 

➡ Initialize  “quality scores”, one for each weight 

Optimization: 
➡ In the forward pass, select 1 of the  weights using the scores.

➡ In the backward pass, update all the scores using a straight-through gradient estimator (Bengio et al., 2013)
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Approach
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For each edge , assign  fixed 
random weights and  
corresponding scores.

(i, j) K
K

Forward: use only one of the  
weight options for each edge 
base on the learned scores. 

K Backward: update all scores 
including those that were not 

used in the forward pass.



Using multiple weight values per connection increases the chances of finding a combination of 
weights that is competitive

Initialization: 
➡  Assign  random values to each connection 

➡ Initialize  “quality scores”, one for each weight 

Optimization: 
➡ In the forward pass, select 1 of the  weights using the scores.
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Selection Methods
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Selection Methods: : selected weight index

1. Greedy Selection (GS): 

2. Probabilistic Selection (PS): 

ρ ∈ {1,⋯, K}
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We evaluate Slot Machines on MNIST and CIFAR-10 using five different networks

Experimental Setup
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Network Architectures:  ‘pool’ indicates max-pooling. All convolutions use  filters3 × 3



Despite containing only random values, the performance of Slot Machines approaches that of traditionally-
trained networks if the number of random weight options ( ) is large enough, e.g.,  = 8. K K

Comparison between Slot Machines 
and Traditional Neural Networks

8

0 20 40 60
K

97.25

97.50

97.75

98.00

98.25

T
es

t
A
cc

ur
ac

y

Lenet on MNIST

0 20 40 60
K

75

76

77

78

79

CONV-2 on CIFAR-10

0 20 40 60
K

82

83

84

85

86

CONV-4 on CIFAR-10

0 20 40 60
K

85

86

87

88

CONV-6 on CIFAR-10

Learned Weights Slot Machines (GS)



For the same total training budget, finetuned Slot Machines produce higher accuracy compared to the same 
models trained from scratch.  

Finetuning Slot Machines
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Pruning randomly initialized networks either through 
• greedy selection (Ramanujan et al., 2020), or 
• probabilistic selection (Zhou et al., 2019). 

Slot Machines do not employ any pruning and have multiple options per connection

Comparisons with Related Works
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• This work demonstrates that neural networks with random weights perform competitively, 
given multiple weight options per connection and a good selection protocol

• Simply selecting the weight with the greatest score is remarkably effective at obtaining 
competitive weight configurations from Slot Machines

• Finetuning selected configurations from Slot Machines often produces accuracy gains over 
training the network from scratch, at comparable computational cost

• Future work will analyze the properties that differentiate the selected weights from those that 
are not selected. Knowing such properties can motivate effective neural network initialization 
methods

Conclusion & Future Work
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