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Introduction

Deep neural networks (NN) have demonstrated impressive performance in

• Computer vision [Krizhevsky et al., 2012]
• Natural language processing [Graves et al., 2013; Young et al., 2018;

Wu et al., 2016]
• Health care [Miotto et al., 2018; Jiang et al., 2017]
• Bioinformatics [Alipanahi et al., 2015; Zhou & Troyanskaya, 2015]



Existing theories for FNNs and CNNs

Approximation theories of NNs have been studied for

• Feedforward neural networks (FNN) [Cybenko 1989; Hamers &
Kohler 2006; Kohler & Mehnert 2011; Lu et al. 2017; Yarotsky
2017; Lee et al. 2017; Suzuki 2019]

• Convolutional neural networks (CNN) [Petersen & Voigtlaender,
2020; Zhou 2020a, 2020b, Oono & Suzuki 2019.]
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Existing theories for FNNs and CNNs

Most of the existing work on FNNs and CNNs
• Are cursed by dimensionality:

• To approximate a C s function in RD with accuracy ε, the network
size is of O(ε−D/s).

• Study Hölder or Sobolev functions.
• [Suzuki 2019] studied Besov functions Bs+α

p,q

W s+α,∞ = Hs,α ⊆ Bs+α
∞,∞ ⊆ Bs+α

p,q

for any 0 < p, q ≤ ∞, s ∈ N and α ∈ (0, 1].



Existing theories for FNNs and CNNs

Most of the existing work on FNNs and CNNs
• Have a cardinality constraint

Without the cardinality constraint With a cardinality constraint

Training networks with the cardinality constraint needs substantial efforts
[Han et al. 2015, 2016; Blalock et al. 2020].



Existing theories for FNNs and CNNs

Most of the existing work on FNNs and CNNs
• Have a cardinality constraint

Without the cardinality constraint With a cardinality constraint

Training networks with the cardinality constraint needs substantial efforts
[Han et al. 2015, 2016; Blalock et al. 2020].



ConvResNets

The convolutional residual network (ConvResNet) is a special CNN with
skip-layer connections.

Residual block

id FC

• Approximation theory of ConvResNets for Hölder functions is
developed by [Oono & Suzuki 2019].

Properties:
• No cardinality constraints
• Cursed by dimensionality
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Our work

Our work
• We assume the data or target functions are located on a

d-dimensional manifold M embedded in RD with d < D.

• We analyze the performance of ConvResNets on
□ Besov function approximation
□ Binary classification with the logistic loss
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Besov function approximation

Theorem
Assume 0 < p, q ≤ ∞, d/p + 1 ≤ s < ∞. Given ε ∈ (0, 1) and under
mild assumptions, we construct a ConvResNet architecture. For any
f ∗ ∈ Bs

p,q(M), if the weight parameters of this ConvResNet are properly
chosen, it gives rises to f̄ satisfying

∥f̄ − f ∗∥L∞ ≤ ε.

Remarks:
• There is no cardinality constraint.
• The network size is of O(ε−d/s), and only weakly depends on D.
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Binary classification
Problem settings:

• We are given a set of data {xi , yi}n
i=1, xi ∈ Ω in RD and

yi ∈ {−1, 1} follows the Bernoulli-type distribution

P(y = 1|x) = η(x), P(y = −1|x) = 1 − η(x).

• Learn a classifier using ConvResNets by minimizing the empirical
logistic loss

A low dimension manifold model for inputs:
• Assume {xi}n

i=1 are located on a d-dimensional manifold M
embedded in RD .
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Binary classification

Theorem
Under the settings of the previous theorem, assume η ∈ Bs

p,q(M). Let f ∗
ϕ

be the minimizer of the population logistic risk. we construct a
ConvResNet architecture with which minimizing the empirical logistic risk
gives rise to f̂ϕ,n with the following excess risk bound

E(Eϕ(f̂ϕ,n, f ∗
ϕ )) ≤ Cn− s

2s+2(s∨d) log4 n,

where Eϕ(f̂ϕ,n, f ∗
ϕ ) denotes the excess logistic risk of f̂ϕ,n against f ∗

ϕ and
C is a constant independent of n.

Remarks:
• Our result gives a faster rate depending on d instead of D
• ConvResNets are adaptive to the intrinsic dimension of data sets
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