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Motivation
Model-free RL suffers from the low sample efficiency in sparse reward tasks

— We propose to constrain the policy to only rollout shortest-path!
o removes the redundancy in the agent’s transitions
o improves the sample complexity
o preserves the optimality

suboptimal
trajectory

e optimal

trajectory




Shortest-path constraint

Definition: The policy only rolls out the shortest-path between rewarding states.
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Optimality guarantee

Then, for any MDP with “mild stochasticity”

Theorem 1 : Shortest-path constraint preserves optimality.
INTRACTABLE!

k-shortest-path constraint: SP constraint is applied to the sub-trajectory with length < k

Theorem 2 : k-shortest-path constraint preserves optimality.
TRACTABLE!




Implementation

We use reachability network (RNet) [Savinov et al., 2018] to implement k-SP constraint.
o RNet learns to predict whether a state is reachable from another within k steps

/ Reachable within 2 steps \ f Not reachable \

in 2 steps




Implementation

We use reachability network (RNet) [Savinov et al., 2018] to implement k-SP constraint.
o RNet learns to predict whether a state is reachable from another within k steps
o  We apply RNet to the agent’s sub-trajectory [St—k,---,5¢) to testif it's a shortest-path
m Property: a path is a shortest-path if temporal length = (spatial) length
o RNet can be trained from the agent’s experience without any extra supervision.

/ Reachable within 2 steps \ f Not reachable \
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Experiment - domains
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Experiment - Minigrid
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e SPRL even outperforms GT-Grid, an upper-bound of novelty-seeking exploration methods.

e SPRL improves

o exploration by suppressing unnecessary explorations.
o exploitation by reducing the policy search space.



Experiment - DMLab
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e SPRL outperforms GT-Grid in DMLab.
e SPRL has the largest improvement in GoallLarge task, where both the map layout is largest and
the reward is most sparse.



Experiment - ATARI
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e Evaluated on 6 tasks : 2 Sparse reward tasks, 1 Dense reward tasks, 3 Non-navigational tasks
e SPRL outperforms the baselines in 5 out of 6 tasks except for Ms.Pacman, a dense reward

task.
e The difference between SPRL and PPO is the largest on non-navigational tasks.



Experiment - Fetch
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SPRL outperforms the baselines even in continuous control tasks.
Reachability network reaches an accuracy over 95% before 1M steps.
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Conclusion

e \We proposed a novel constraint on policy that improves the sample-efficiency
of any model-free RL method

e SPRL outperforms strong novelty-seeking exploration baselines

e SPRL opens up a novel direction to improve sample efficiency in
reinforcement learning



