

Research

Shortest-Path constrained Reinforcement Learning for Sparse Reward Tasks

Sungryull Sohn*
University of
Michigan
LG AI Research

Sungtae Lee* Yonsei University Jongwook Choi University of Michigan

Harm van Seijen Microsoft Research Mehdi Fatemi Microsoft Research

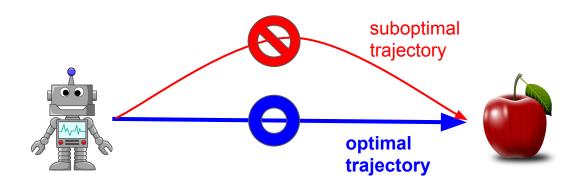
Honglak Lee LG AI Research University of Michigan

* Equal contributions

Motivation

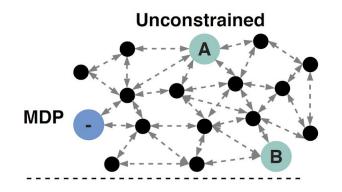
Model-free RL suffers from the low sample efficiency in sparse reward tasks

- → We propose to **constrain the policy** to only rollout shortest-path!
 - removes the redundancy in the agent's transitions
 - improves the sample complexity
 - preserves the optimality



Shortest-path constraint

Definition: The policy only rolls out the shortest-path between rewarding states.



Initial state:

Rewarding state:

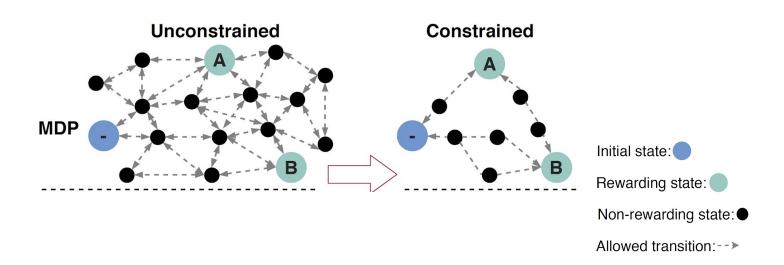
Non-rewarding state:

Allance of two casitions

Allowed transition:-->

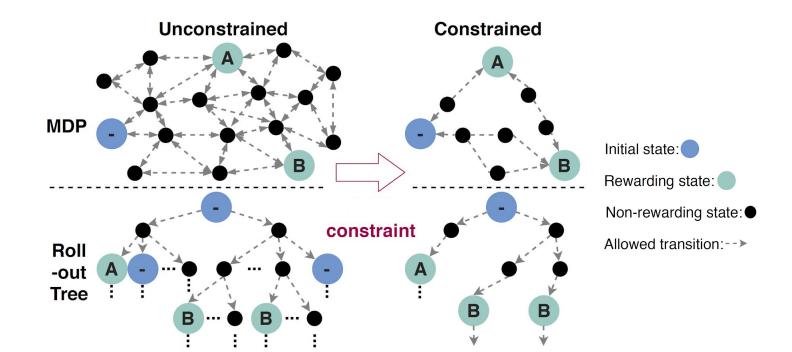
Shortest-path constraint

Definition: The policy only rolls out the shortest-path between rewarding states.



Shortest-path constraint

Definition: The policy only rolls out the shortest-path between rewarding states.



Optimality guarantee

Then, for any MDP with "mild stochasticity"

Theorem 1 : Shortest-path constraint preserves optimality.

INTRACTABLE!

k-shortest-path constraint: SP constraint is applied to **the sub-trajectory with length ≤ k**

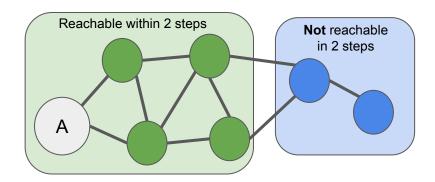
Theorem 2: k-shortest-path constraint preserves optimality.

TRACTABLE!

Implementation

We use *reachability network* (RNet) [Savinov et al., 2018] to implement k-SP constraint.

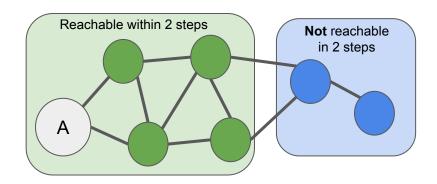
RNet learns to predict whether <u>a state is reachable from another within k steps</u>



Implementation

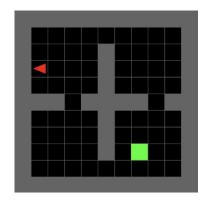
We use *reachability network* (RNet) [Savinov et al., 2018] to implement k-SP constraint.

- RNet learns to predict whether <u>a state is reachable from another within k steps</u>
- \circ We apply RNet to the agent's sub-trajectory $[s_{t-k},\dots,s_t]$ to test if it's a shortest-path
 - Property: a path is a shortest-path if temporal length = (spatial) length
- RNet can be trained from the agent's experience without any extra supervision.



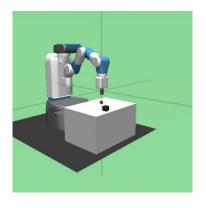
Experiment - domains

MiniGrid

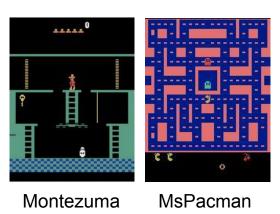


DMLab

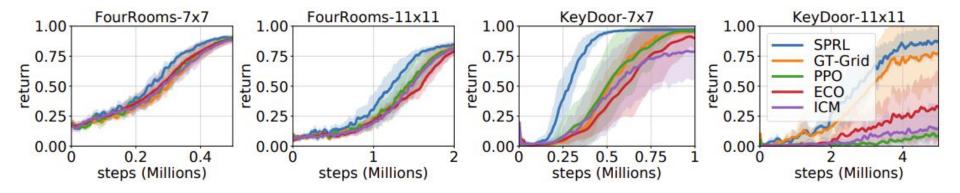
Fetch



ATARI

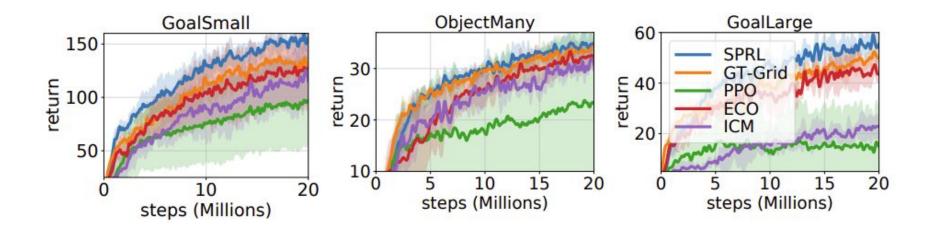


Experiment - Minigrid



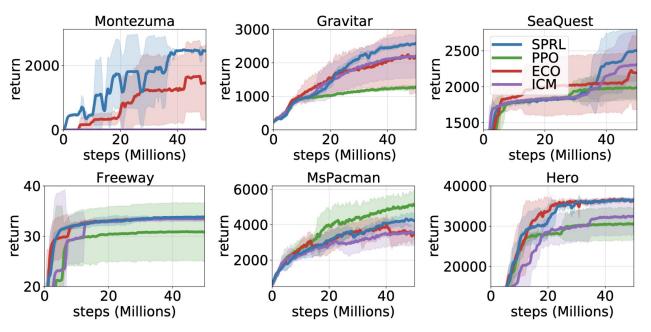
- SPRL even outperforms GT-Grid, an upper-bound of novelty-seeking exploration methods.
- SPRL improves
 - exploration by suppressing unnecessary explorations.
 - exploitation by reducing the policy search space.

Experiment - DMLab



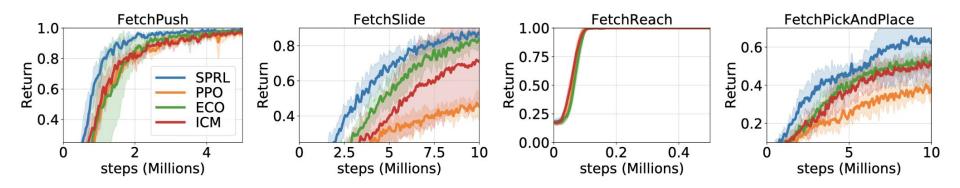
- SPRL outperforms GT-Grid in DMLab.
- SPRL has the largest improvement in GoalLarge task, where both the map layout is largest and the reward is most sparse.

Experiment - ATARI



- Evaluated on 6 tasks: 2 Sparse reward tasks, 1 Dense reward tasks, 3 Non-navigational tasks
- SPRL outperforms the baselines in 5 out of 6 tasks except for Ms.Pacman, a dense reward task.
- The difference between SPRL and PPO is the largest on non-navigational tasks.

Experiment - Fetch



- SPRL outperforms the baselines even in **continuous control tasks**.
- Reachability network reaches an accuracy over 95% before 1M steps.

Conclusion

- We proposed a novel constraint on policy that improves the sample-efficiency of any model-free RL method
- SPRL outperforms strong novelty-seeking exploration baselines
- SPRL opens up a novel direction to improve sample efficiency in reinforcement learning