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Theorem 1: Naïve generalization 

does not satisfy IGM

Given a factorization function Ψ that satisfies IGM in the following form:

𝑄jt 𝐡, 𝐮 = Ψ(𝑠, 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K )

The condition above is not enough to guarantee that

𝑍jt 𝐡, 𝐮 = Ψ(𝑠, 𝑍1 ℎ1, 𝑢1 , … , 𝑍K ℎK, 𝑢K )

Satisfies IGM for random variables.



Theorem 2: Mean-Shape Decomposition

satisfies IGM

Mean-Shape Decomposition:

𝑍jt 𝐡, 𝐮 = 𝔼 𝑍jt 𝐡, 𝐮 + 𝑍jt 𝐡, 𝐮 − 𝔼 𝑍jt 𝐡, 𝐮

= 𝑍mean 𝐡, 𝐮 + 𝑍shape 𝐡, 𝐮

where

• 𝑍mean 𝐡, 𝐮 = Ψ 𝑠, 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K

• 𝑍shape 𝐡, 𝐮 = Φ 𝑠, 𝑍1 ℎ1, 𝑢1 , … , 𝑍K ℎK, 𝑢K

• Ψ satisfies IGM for 𝑄𝑘 𝑘=1
K , Var 𝑍mean = 0, and 𝔼 𝑍shape = 0.

Mean-Shape decomposition is guaranteed to satisfy IGM.



Theorem 3: Quantile Mixture have the form 

of sum of random variables

Given a Quantile Mixture:

𝐹𝑍
−1 = ෍

𝑘=1

K

𝛽𝑘 ⋅ 𝐹𝑍𝑘
−1

where 𝛽𝑘 ≥ 0, ∀𝑘. There exist corresponding 𝑍, 𝑍𝑘 𝑘=1
K that satisfies:

𝒁 = ෍

𝒌=𝟏

𝐊

𝜷𝒌 ⋅ 𝒁𝒌

where the joint CDF of 𝑍𝑘 𝑘=1
K :

𝐹𝐙 𝐳 = min
𝑘

𝐹𝑍𝑘
−1 𝑧𝑘
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DFAC Framework

For approximating 𝑍shape = Φ, we have the following choices:

(Assume we have 𝐾 agents and 𝑁 atoms/quantiles)

• C51 (models PMF)

(convergence issue, not robust to hyperparameters, large network)

– Convolution & Heuristic Projection (𝑶(𝑲𝑵𝟐))

– FFT Convolution + Heuristic Projection (𝑶 𝑲𝑵 𝐥𝐨𝐠𝑵 )

• IQN (models CDF)

(convergence guarantee, robust to hyperparameters, light-weight)

– Quantile Mixture (𝑶 𝑲𝑵 )
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6h_vs_8z 13.96 15.49 14.02 14.98 19.32 17.81

3s5z_vs_3s6z 15.48 19.77 20.06 17.42 20.68 20.78

MMM2 17.47 19.32 19.45 19.21 21.06 19.69

27m_vs_30m 13.95 18.49 19.46 15.16 19.72 19.40

corridor 19.30 19.38 13.44 19.57 19.97 19.61
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For more information, please refer to the QR code below:


