Learning Bounds for Open-Set Learning

Zhen Fang

ICML | 2021

AAII, University of Technology Sydney

June 2021

Problem Setting

- Main Idea and Main Theoretical Results
 - Main Idea
 - Main Theoretical Results

- 3 Experiments
 - Proposed Algorithm

Open-Set Learning

Definition (Domain)

Given a feature space $\mathcal{X} \subset \mathbb{R}^d$ and a label space \mathcal{Y} , a domain is a joint distribution $P_{X,Y}$, where random variables $X \in \mathcal{X}, Y \in \mathcal{X}$.

Known classes are a subset of \mathcal{Y} . We define the label space of known classes as \mathcal{Y}_k . Then, the *unknown classes* are from the space $\mathcal{Y}/\mathcal{Y}_k$.

Unknown Classes

Known Classes

Open-Set Learning

Definition (Open-Set Learning)

Given i.i.d. samples $S = \{(\mathbf{x}^i, \mathbf{y}^i)\}_{i=1}^n$ drawn from $P_{X,Y|Y \in \mathcal{Y}_k}$. The aim of open-set learning is to train a classifier f using S such that f can classify

- 1) the sample from known classes into correct known classes;
- 2) the sample from unknown classes into unknown classes.

----- Boundary

Main Idea

Aim to construct an auxiliary domain, which has larger support set than that of the known distribution $P_{X,Y|Y\in\mathcal{Y}_k}$. By transferring unknown information from unknown classes of the auxiliary domain, we can recognize the unknown classes.

- **Step 1.** Given an auxiliary distribution U such that $P_{X,Y|Y\in\mathcal{Y}_k}\ll U$;
- **Step 2.** Construct a weight function w such that $P_{X,Y|Y\in\mathcal{Y}_k}\approx wU$;
- **Step 3.** Construct a weight transformation $L_{\tau,\beta}$ such that the density $L_{\tau,\beta}(w)U$ of unknown classes is β ;
- **Step 4.** Transfer knowledge from $L_{\tau,\beta}(w)U$ to $P_{X,Y}$.

Main Theoretical Results

Generalization Error for Open-Set Learning

Given mild assumptions, any $\epsilon_0 > 0$ and samples S with size n, there exists an algorithm A_{ϵ_0} whose output belongs to a hypothesis space \mathcal{H} , the estimation error of A_{ϵ_0} is close to $O(\sqrt{1/n})$, i.e.,

$$|R_P^{lpha}(A_{\epsilon_0}(S)) - \min_{m{h} \in \mathcal{H}} R_P^{lpha}(m{h})| \leq O_p(\sqrt{1/n}) + \epsilon_0,$$

where R_P^{α} is the risk for open-set learning and O_p is related to ϵ_0 .

The generalization error bound proved in our work provides the first almost-PAC-style guarantee on open-set learning.

Proposed Algorithm

Based on our theory, we minimize a proxy risk:

$$\widetilde{R}_{S,T}^{ au,eta}(oldsymbol{h}) := \widehat{R}_{S}(oldsymbol{h}) + rac{lpha\gamma'}{1-lpha}\widehat{R}_{S,T,u}^{ au,eta}(oldsymbol{h}),$$

where $\widehat{R}_{S}(\boldsymbol{h})$ is the risk for known classes and $\widehat{R}_{S,T,u}^{\tau,\beta}(\boldsymbol{h})$ is the risk for unknown classes, i.e., given m auxiliary data T from U,

$$\widehat{R}_{\mathcal{S},\mathcal{T},u}^{\tau,\beta}(\boldsymbol{h}) := \frac{1}{m} \sum_{\mathsf{x} \in \mathcal{T}} L_{\tau,\beta}^{-}(\widehat{w}(\mathsf{x})) \ell(\boldsymbol{h}(\mathsf{x}), \mathsf{y}_{C+1}),$$

here

$$L_{\tau,\beta}^{-}(x) = \begin{cases} x + \beta, & x \le \tau; \\ 0, & 2\tau \le x; \\ -\frac{\tau + \beta}{\tau} x + 2\tau + 2\beta, & \tau < x < 2\tau. \end{cases}$$
(1)

Experiments

• The performance on dataset MNIST, CIFAR-10 using F1 scores. Dark colour means best performance.

Algorithm	Omniglot	MNIST-Noise	Noise
Openmax	0.780	0.816	0.826
CROSR	0.793	0.827	0.826
CGDL	0.850	0.887	0.859
Ours (AOSR)	0.825	0.953	0.953

Algorithm	ImageNet-crop	ImageNet-resize	LSUN-crop	LSUN-resize
Openmax	0.660	0.684	0.657	0.668
CROSR	0.721	0.735	0.720	0.749
CGDL	0.840	0.832	0.806	0.812
Ours (AOSR)	0.798	0.795	0.839	0.838

Acknowledgements

Acknowledgements: The work introduced in this paper was supported by the Australian Research Council (ARC) under FL190100149.

Thank You

Thank You!