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Supervised learning: standard
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Supervised learning: standard
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Supervised learning: distillation
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Successes of distillation

Empirically, distillation has demonstrated wide success:

CIFAR-100, ResNet-34

System Test Frame Accuracy Network Teacher | BAN R
 Baucline 5% DenseNet-112-33 | 1825 | 16.95 : -_-_.
nsemble A% <
Distilled Single model 60.8% DenseNet-90-60 17.69 | 16.69
DenseNet-80-80 17.16 16.36
DenseNet-80-120 | 16.87 | 16.00 - | - I
0.12
CE LS B SD
Hinton et al., 2015 Furlanello et al., 2018 Zhang et al., 2020

But why does distillation help?
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Summary of our work

Q: Why does distillation help?

A: We provide a statistical perspective:
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Teacher approximates Bayes probabilities
Exact Bayes probabilities — reduce variance of objective
Approximate Bayes probabilities — bias-variance tradeoff

0.70-
oy
g 0.68-
3 0.66-
@
S o64-

— teacher -
— student -

S 0.62-
'_
0.60 -
0.58+ ' ' ' ' r
8 14 20 32 44 56
Teacher depth
1.60-
1.55. — teacher

s student

1.254 f ' ' ! r
8 14 20 32 44 56
Teacher depth



/ Distilling from a \

Bayes teacher
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Statistical learning setup

Suppose our training samples (z,y) ~ P

Underlying “Bayes” distribution

Student goal: minimise the population risk, i.e., expected loss:

R(f) = lgyll‘llx[f(y, f(z))]
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Statistical learning setup

Suppose our training samples (z,y) ~ P

Underlying “Bayes” distribution

Student goal: minimise the population risk, i.e., expected loss:
R(f) =E E[(y, f(2))
=E[p*(z) " ¢(f(2))]
TS Pry= 100, Py = L)

Inherently smooths loss by Bayes-probabilities!
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“Bayes teacher” distillation

“Bayes-distilled” training loss:

Rf) = 3 0 ()Tl (za))
N

n€[N] Predictions from a "Bayes
teacher”

Like standard empirical loss, E[R.(f)] = R(f)

But has an important advantage...
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Why does “Bayes distillation” help?

Bayes-distilled loss lowers variance over empirical loss:

V R <V [R(f)

S~PN S~PN
T Variance over draws of

training set

Lower variance — better generalisation bound:

R(f) < R.(£;S) + O (\/V*N(f) /N - \flog (M, /6)+
log (M /6) /N ),

| See paper |
i for more!

“Bayes distillation” can improve generalisation!
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Distilling from imperfect teacher

“Bayes teacher” helps; but what about other teachers?

Better approximation of p* — better generalisation:

E[(R(f;S) — R(f))?] < — -V [p'(z) T¢(f(2))]

1
N
+O(E|lp*(z) — p*(2)l3)
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Distilling from imperfect teacher

“Bayes teacher” helps; but what about other teachers?

Better approximation of p* — better generalisation:

E[(R(f;$) - R())?] < -V [p(@) T U(E(2))]

+0(IE[p"(z)] - p* @)l + V [p'(=)]).

" Bias-variance tradeoff
for modelling p*
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Implications: bias-variance bound

Bound is not on teacher accuracy
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Teacher can be accurate but poorly calibrated

e 1

E[(R(55) - REO)?) < 1V [p(@) TU(E(w)]

+O([ER @] - @I+ V[P'@)]).

cf. finding that accurate teachers may distill poorer [Muller et al., 2019]
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(b) Log-loss.
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Applications
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Applications of statistical view
Use teacher’s estimates in place of Bayes probabilities p*(x)

Example: bipartite ranking, where goal is to minimise

PD(f)= P P (f(z)<f(z'))

z|ly=+1z[y=-1

Distilled bipartite risk:

PD(f) Z P (2:)-(1—p" (=) [f (=) < flz;)]-
i€S,jes—{i} \ Additional See paper
Good weighting on . for more! |
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Summary of our work

Q: Why does distillation help?

A: We provide a statistical perspective:
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Teacher approximates Bayes probabilities
Exact Bayes probabilities — reduce variance of objective
Approximate Bayes probabilities — bias-variance tradeoff
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