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Federated Learning and Mixture Models

#6 Do you have a raliable form
of transportation to et to work
on time? (Y/N)

#6 Are you at least 18 years old
or older? (Y/N)

Do you have experience

using Microsoft Office (Word,
Excel, Outlook) or similar? (Y]
)

8 Can you speak, read an
write tha English language
proficiently? (Y/N)

#9 What do you think would be

MD-659147

Hello Nicolas!

Glad to have you with us, get
rewarded for reel Collect your free
baggage ater your purchase.
Show this ms3. Vaiid for 7 days.
CD: FREEMINKO. msg HELP for
mare info. Reply STOP to quit
plsvisit: ste enmaki/galiery
Enmarkit Team

| T &

your food s fresh out the
‘oven and is currontly on its way
10 you by our driver Sreejan.
Thank you for using
FoodToDoor - we hope you



Mixed Linear Regression Model
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Expectation-Maximization for Mixed Linear Regression

* The Maximum Likelihood (ML) approach for MLR is computationally hard.

* The EM algorithm is the standard method to solve ML for MLR models.

* E-step: Estimate the latent variable from current parameters

* M-step: Maximize the likelihood function based on the estimated latent variable.

* However, EM incurs great computational and communication costs in

federated learning settings for the M-step at every iteration.



Wasserstein Mixed Linear Regression (WMLR)

* As in Maximum Likelihood, EM optimizes the KL-divergence:

argmin D1, (Paata, Pa, )
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* We propose to minimize the Wasserstein distance in the WMLR approach

argmin W (Piata, Pa, )
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WMLR as a Min-Max Optimization Problem

* We apply the Kantorovich duality to reduce WMLR to a minimax problem:

min max Ep,,,, [¢(X,Y)] -
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* Consider the minimax problem with unconstrained ¢:

* Good news: The population solution is the underlying MLR model. (©)

* Bad news: The computational and statistical costs are too heavy. @



WMLR: Optimal Transport Theory for Optimization Design

* Brenier’s Theorem: The optimal potential function’s gradient in WMLR

transports samples from the data distribution to learned model:
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WMLR: Optimal Transport Theory for Minimax Design

* Unimodal MLR: Linear transport map = Quadratic ¢

Theorem: For a well-separable MLR with the component classification

error p,, the optimal ¢ can be approximated within 0(%/p; ) error using

the following softmax-based quadratic function:
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WMLR Minimax Problem and Theoretical Guarantees

* Bounding the c-transform via a regularization term, we reduce WMLR

to the following minimax problem with a nonconvex-concave structure:
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Theorem: (A) A gradient descent ascent (GDA) optimizer will solve the

WMLR minimax problem to find a stationary minimax solution.

(B) For a mixture of two symmetric regression components, GDA can

find the global minimax solution under the population distribution.

(C) GDA steps are capable of being decomposed to a distributed form.




Numerical Results;: WMLR vs. EM baselines
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Relative [2 error

Numerical Results;: WMLR vs. EM baselines
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Summary

Mixed Linear Regression

= S

Optimal Transport

Minimax Optimization

Federated Learning

17



