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Interactive machine learning beyond explicit reward

Interactive machine learning in Textbook
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Interactive machine learning beyond explicit reward

Interactive machine learning in Real World
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Interactive machine learning beyond explicit reward
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Challenge: Interpretation is not always 9
feasible with rich feedback signals. Agent



Interactive machine learning beyond explicit reward

How can we learn without explicit reward?
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Interaction-Grounded Learning (IGL)
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Algorithm for IGL

e Learning Goals:
* Policym: X —» A (approximating optimal policy ™)

* Reward decoder i: Y — [0,1] (approximating optimal reward decoder ™)

* Proxy Learning Objective: (corresponding algorithm --- E2G)

* argmaxy ,V(7, ) — V(itpag, )

V(rm, 1/1) = [Ex,a,y~7t [w)])



Our Result

* E2G provably converges to (*, 1™ ) under natural assumptions.

* Assumptions:
* Conditional Independence
--- feedback vector y only contains information about reward r
* |dentifiability
--- a4 IS “bad” enough to be identified



Conclusion

* |GL: A novel setting that conducts interactive machine learning without
explicit reward function.

* E2G: A novel algorithm provably solves IGL under natural assumptions.

* Future Directions:
* Relaxing the assumption of conditional independence
* Applying IGL to real-world problems (e.g., brain-computer interface)

Thank you!



