Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	000000	0000

On the price of explainability for some clustering problems

Eduardo Laber and Lucas Murtinho

International Conference on Machine Learning July 2021

・ 同 ト ・ ヨ ト ・ ヨ ト

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
●0000	000000	000000	000000	0000

Table of Contents

1 Introduction

- 2 k-centers
- 3 k-medians

4 *k*-means

5 Maximum spacing

<ロト < 回 ト < 臣 ト < 臣 ト 三 三 の Q G</p>

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -medians	Maximum spacing
00000		0 000

Decision-tree explainable clustering

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00●00	000000	000000	000000	0000

Price of Explainability

For a minimization problem,

$$\mathsf{PoE} = \max_{l \in \mathcal{I}} \left\{ \frac{OPT_e(l)}{OPT_u(l)} \right\}$$

- OPT_e: optimal cost for an explainable partition
- OPT_u: optimal cost for an unrestricted partition
- $\blacksquare \ \mathcal{I}$: the set of instances of the problem

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00●00	000000	000000	000000	0000

Price of Explainability

For a maximization problem,

$$\mathsf{PoE} = \max_{l \in \mathcal{I}} \left\{ \frac{OPT_u(l)}{OPT_e(l)} \right\}$$

- OPT_u: optimal value for an unrestricted partition
- OPT_e: optimal value for an explainable partition
- $\blacksquare \ \mathcal{I}$: the set of instances of the problem

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	000000	0000

Our results

Criterion	Lower bound	Upper bound
k-centers	$\Omega\left(rac{\sqrt{d}k^{1-1/d}}{\log^{1.5}k} ight)$	$O\left(\sqrt{d}k^{1-1/d} ight)$
<i>k</i> -medians	$\Omega(\log k)$	$O(k), O(d \log k)$
<i>k</i> -means	$\Omega(\log k)$	$O(k^2), O(dk \log k)$
maximum spacing	Θ	(n-k)

Lower and upper bounds for the PoE of different clustering problems. Bounds in red are from [Dasgupta et al., 2020, ICML].

イロト イヨト イヨト イヨト

Ξ.

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
0000●	000000	000000	000000	0000

Related work

[Dasgupta et al., 2020, ICML]:

- Price of Explainability
- Bounds for *k*-medians and *k*-means
- IMM algorithm

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
0000●	000000	000000	000000	0000

Related work

[Dasgupta et al., 2020, ICML]:

- Price of Explainability
- Bounds for *k*-medians and *k*-means
- IMM algorithm
- [Frost et al., 2020]:
 - ExKMC algorithm (not limited to k leaves)
 - Experimental results

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
0000●	000000	000000	000000	0000

Related work

[Dasgupta et al., 2020, ICML]:

- Price of Explainability
- Bounds for *k*-medians and *k*-means
- IMM algorithm
- [Frost et al., 2020]:
 - ExKMC algorithm (not limited to k leaves)
 - Experimental results
- [Charikar et al., STOC 00]:
 - Binary search tree with bound of O(log k) of finding one of k items

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	●00000	000000	000000	0000

Table of Contents

1 Introduction

2 k-centers

3 k-medians

4 *k*-means

5 Maximum spacing

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ─の�?

Eduardo Laber and Lucas Murtinho

<i>k</i> -centers	<i>k</i> -medians	Maximum spacing
00000		

k-centers: problem description

Minimize the maximum distance between a point and the closest reference center.

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
00000		

• k = 16, d = 2• $c^i = (i, 4i \mod 15)$

◆□→ ◆□→ ◆注→ ◆注→

∃ 990

Eduardo Laber and Lucas Murtinho

<i>k</i> -centers	<i>k</i> -medians	Maximum spacing
00000		

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
00000		

•
$$c^i = (i, 4i \mod 15)$$

- Unrestricted cost: $\frac{3}{4}$
- Distance between centers: $\approx \sqrt{k}$
- No mistakeless cuts

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● ⑦ � @ ◆

Eduardo Laber and Lucas Murtinho

<i>k</i> -centers	<i>k</i> -medians	Maximum spacing
000000		

•
$$c^i = (i, 4i \mod 15)$$

- Unrestricted cost: $\frac{3}{4}$
- Distance between centers: $\approx \sqrt{k}$
- No mistakeless cuts

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
00000		

•
$$c^i = (i, 4i \mod 15)$$

- Unrestricted cost: $\frac{3}{4}$
- Distance between centers: $\approx \sqrt{k}$
- No mistakeless cuts
- Explainable cost: $\Omega(\sqrt{k})$ (for d = 2)

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → 釣んの

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
000000		

For general *d*:

- Center cⁱ coordinates are shifts of i representation in base b = k^{1/p}, where p = p(k, d)
- 2d points associated to each center, identical to associated center in all but a single coordinate

(日) (四) (三) (三)

э

Price of Explainability:

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
000000		

- *k* = 9, *d* = 2
- Bounding box of size
 D₁ × D₂

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
000000		

- Bounding box of size
 D₁ × D₂
- Grid strategy: equal-sized boxes $(D_1/\sqrt{k}) \times (D_2/\sqrt{k})$

▲口 ▶ ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ ▲ 国 ▶ ▲ ◎ ♥ ♥ ♥

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
000000		

- *k* = 9, *d* = 2
- Bounding box of size
 D₁ × D₂
- Grid strategy: equal-sized boxes $(D_1/\sqrt{k}) \times (D_2/\sqrt{k})$ • Cost $\leq \frac{\max\{D_1, D_2\}}{\sqrt{k}}$

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
000000		

- *k* = 9, *d* = 2
- Bounding box of size
 D₁ × D₂
- Grid strategy: equal-sized boxes $(D_1/\sqrt{k}) \times (D_2/\sqrt{k})$

• Cost
$$\leq \frac{\max\{D_1, D_2\}}{\sqrt{k}}$$

Can be arbitrarily bad

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
00000		

Refined Grid:

Perform as many **mistakeless cuts** as possible

2 Apply Grid

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Eduardo Laber and Lucas Murtinho

k-centers	<i>k</i> -medians	Maximum spacing
00000		

Refined Grid:

Perform as many mistakeless cuts as possible
 Apply Grid

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

If no more mistakeless cuts are possible, $OPT_{unrestricted} \ge \frac{\max\{D_1, D_2\}}{k}$

k-centers	<i>k</i> -medians	Maximum spacing
00000		

Refined Grid:

Perform as many mistakeless cuts as possible
 Apply Grid

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

If no more mistakeless cuts are possible, $OPT_{unrestricted} \ge \frac{\max\{D_1, D_2\}}{k}$

PoE is
$$O(\sqrt{k})$$
 for $d = 2$ (tight bound)

k-centers	<i>k</i> -medians	Maximum spacing
00000		

Refined Grid:

Perform as many mistakeless cuts as possible
 Apply Grid

イロン イロン イヨン イヨン

э.

- If no more mistakeless cuts are possible, $OPT_{unrestricted} \ge \frac{\max\{D_1, D_2\}}{k}$
- PoE is $O(\sqrt{k})$ for d = 2 (tight bound)
- For general d, PoE is $O(\sqrt{d}k^{1-1/d})$

	k-medians	Maximum spacing
	00000	

Table of Contents

4 *k*-means

5 Maximum spacing

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ─の�?

Eduardo Laber and Lucas Murtinho

	k-medians	Maximum spacing
	00000	

k-medians: problem description

Minimize the sum of the ℓ_1 distances between each point and its reference center (the median of all points in the cluster).

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	Maximum spacing
	00000	0 000

k-medians: original PoE upper bound

[Dasgupta et al., ICML 2020]:

- IMM algorithm: greedily apply cut that minimizes the number of mistakes
 - $Cost(D) = OPT + \sum_{v \in D} Excess(v)$
 - Excess(v) ≤ #mistakes(v) · diam(v)

2

イロト イヨト イヨト イヨト

	<i>k</i> -medians	Maximum spacing
	00000	0 000

k-medians: original PoE upper bound

[Dasgupta et al., ICML 2020]:

- Theorem: IMM yields upper bound of O(k) to PoE of k-medians
 - Independent of d

< (T) >

What happens when d is small?

	<i>k</i> -medians	Maximum spacing
	000000	0 000

k-medians: improved PoE upper bound for low dimensions

Our approach:

 Build a tree D_i for each dimension

$$i=1,\ldots,d$$

Factor of log k

∃ ► < ∃ ►</p>

2

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	Maximum spacing
	000000	0 000

k-medians: improved PoE upper bound for low dimensions

Our approach:

- Build a tree D_i for each dimension i = 1,..., d
 - 1,...,*u*
 - Factor of log k
- Build the final tree *D* selecting nodes from *D*₁,..., *D*_d

Factor of d

イロト イポト イヨト イヨト

	<i>k</i> -medians	Maximum spacing
	000000	0000

k-medians: improved PoE upper bound for low dimensions

Our approach:

 Build a tree D_i for each dimension i = 1,..., d

- 1,...,u

Factor of log k

 Build the final tree D selecting nodes from D₁,..., D_d

Factor of d

PoE is $O(d \log k)$

イロト イポト イヨト イヨト

	k-medians	Maximum spacing
	000000	

k-medians: finding the tree for a single coordinate

For a given *i*, minimizing

$$\mathsf{Excess}(D,i) = \sum_{v \in D_i} \#\mathsf{Mistakes}(v) \cdot \mathsf{Diam}(v)_i$$

reduces to a binary search problem where items have distinct search probabilities and probing costs:

- probing cost = # of mistakes
- search probability = distance between item's adjacent centers at coordinate i

	k-medians	Maximum spacing
	000000	

k-medians: finding the tree for a single coordinate

For a given *i*, minimizing

$$\mathsf{Excess}(D,i) = \sum_{v \in D_i} \#\mathsf{Mistakes}(v) \cdot \mathsf{Diam}(v)_i$$

reduces to a binary search problem where items have distinct search probabilities and probing costs:

- probing cost = # of mistakes
- search probability = distance between item's adjacent centers at coordinate i
- [Charikar et al., STOC 00]: BST for k items where the cost of finding an item j is at most O(log k) larger than its probing cost

	<i>k</i> -medians	Maximum spacing
	000000	0 000

k-medians: selecting the best cut for the final tree

 Pick coordinate *i* associated to the largest side of the box that bounds the points in *u*

э

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	Maximum spacing
	000000	0 000

k-medians: selecting the best cut for the final tree

- Pick coordinate *i* associated to the largest side of the box that bounds the points in *u*
- Apply cut in D_i given by the least common ancestors of the centers that reached u

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	●00000	0000

イロト イヨト イヨト イヨト

2

Table of Contents

3 k-medians

Maximum spacing

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	k-means	Maximum spacing
00000	000000	000000	0●0000	0000

k-means: problem description

Minimize the sum of the squared ℓ_2 distances between each point and its reference center (the mean of all points in the cluster).

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	k-means	Maximum spacing
		00000	0 000

k-means: improved PoE upper bound for low dimensions

- Same algorithm as for k-medians
- The factor for each D_i is multiplied by k due to the cost function of k-means

くぼ ト く ヨ ト く ヨ ト

• The PoE for k-means is $O(dk \log k)$

	<i>k</i> -medians	k-means	Maximum spacing
		000000	

k-means: a practical algorithm

- **Ex-Greedy**: recursively find the best cut that separates at least two centers and that minimizes the *k*-means cost of a *k*-partition, considering that:
 - points cannot be assigned to centers from which they were separated
 - the k reference centers are always the same
- The algorithm maintains a k-partition as it runs, but only when it ends is it guaranteed that the partition is explainable
 - Contrast with ExKMC [Frost et al., 2020], in which explainable partitions with 2, 3, ..., k clusters are defined after each cut

	<i>k</i> -medians	k-means	Maximum spacing
		000000	

k-means: **Ex-Greedy** example

Cross-section of Iris dataset with unrestricted partition

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	k-means	Maximum spacing
		000000	

k-means: **Ex-Greedy** example

Cross-section of Iris dataset with first cut of Ex-Greedy

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	0000●0	0000

k-means: **Ex-Greedy** example

Cross-section of Iris dataset with second cut of Ex-Greedy

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	k-means	Maximum spacing
		00000	0 000

k-means: **Ex-Greedy** results

Table 1: Comparison of Ex-Greedy and IMM over 10 datasets

Dataset	n	d	k	IMM	Ex-Greedy
BreastCancer	569	30	2	1.00	1.00
Iris	150	4	3	1.04	1.04
Wine	178	13	3	1.00	1.00
Covtype	581,012	54	7	1.03	1.03
Mice	552	77	8	1.12	1.09
Digits	1,797	64	10	1.23	1.21
CIFAR-10	50,000	3,072	10	1.23	1.17
Anuran	$7,\!195$	22	10	1.30	1.15
Avila	20,867	12	12	1.1	1.09
Newsgroups	$18,\!846$	1,069	20	1.01	1.01

Introduction	<i>k</i> -centers	<i>k</i> -medians	k-means	Maximum spacing
00000	000000	000000	00000●	0000

k-means: **Ex-Greedy** results

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	000000	

Table of Contents

1 Introduction

2 *k*-centers

3 k-medians

4 *k*-means

5 Maximum spacing

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Eduardo Laber and Lucas Murtinho

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	000000	0●00

Maximum spacing: problem description

Maximize the distance between the closest points that belong to different clusters.

Eduardo Laber and Lucas Murtinho

	<i>k</i> -medians	Maximum spacing
		0000

Maximum spacing: PoE lower bound

- *k* = *d* = 2
- $OPT_{unrestricted} = n/2$
- $OPT_{explainable} = 1$
- For general d, dataset with unrestricted spacing O(n - k) and explainable spacing 1
- PoE is $\Omega(n-k)$

イロト イヨト イヨト イヨト

3

	<i>k</i> -medians	Maximum spacing
		0000

Maximum spacing: PoE upper bound

- O(n-k) algorithm:
 - **1** $C_{exp} \leftarrow all points$
 - **2** $C^* \leftarrow$ optimal unrestricted partition
 - **3** Repeat k 1 times:
 - $S \leftarrow$ group in C_{exp} not contained in any group of C^*
 - Split S with the axis-aligned cut that yields two clusters with maximum spacing

Introduction	<i>k</i> -centers	<i>k</i> -medians	<i>k</i> -means	Maximum spacing
00000	000000	000000	000000	●000

Thank you!

Questions?

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Eduardo Laber and Lucas Murtinho