Gradient Disaggregation:
Breaking Privacy in Federated Learning by
Reconstructing the User Participant Matrix

Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, Michael Mitzenmacher

=@ HARVARD

UNIVERSITY



e Background

e [hreat Model & Attack
e Results

e Gonclusion



Background: Federated Learning

e What is Federated Learning?

o  Collaboratively learn a shared model across clients without sending raw data to central server



Background: Federated Learning

e What is Federated Learning?

o  Collaboratively learn a shared model across clients without sending raw data to central server

e Where is Federated Learning Used?

o Next word prediction, sentiment learning, health monitoring, content suggestion
o  Google', Apple?, Facebook?

1https [[ai.googleblog.com/2017/04/federated-learning-collaborative.html

2https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learnin
3https://ai.facebook.com/research/publications/fair-resource-allocation-in-federated-learnin



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://ai.facebook.com/research/publications/fair-resource-allocation-in-federated-learning/

Background: Federated Learning

e What is Federated Learning?

o  Collaboratively learn a shared model across clients without sending raw data to central server

e Where is Federated Learning Used?

o Next word prediction, sentiment learning, health monitoring, content suggestion
o  Google', Apple?, Facebook?

e Why Federated Learning?

o Privacy! Training data is kept on device, not revealed to central server

1https [[ai.googleblog.com/2017/04/federated-learning-collaborative.html

2https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learnin
3https://ai.facebook.com/research/publications/fair-resource-allocation-in-federated-learnin



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://ai.facebook.com/research/publications/fair-resource-allocation-in-federated-learning/

Background: Federated Learning

e What is Federated Learning?

o  Collaboratively learn a shared model across clients without sending raw data to central server

e Where is Federated Learning Used?

o Next word prediction, sentiment learning, health monitoring, content suggestion
o  Google', Apple?, Facebook?

e Why Federated Learning?

o Privacy! Training data is kept on device, not revealed to central server

e How does Federated Learning Work?

o) —>



Background: Federated Learning

e How does Federated Learning Work?

— A
—0 &
S— 8

Central Server Clients




Background: Federated Learning

e How does Federated Learning Work?

o 1 Central server broadcasts global model — clients

J,
v
Do Do Do

Central Server Clients



Background: Federated Learning

e How does Federated Learning Work?

o 1 Central server broadcasts global model — clients
o 2. Clients compute model update on local training data

—s AC
—c AC
— ae

Central Server Clients




Background: Federated Learning

e How does Federated Learning Work?
o 1 Central server broadcasts global model — clients
o 2. Clients compute model update on local training data
o 3.Server securely aggregates model updates via Secure Aggregation! — central server
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1.  Bonawitz et al, Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017



Background: What is the Gradient Disaggregation Attack?

e (Gradient Disaggregation
o Undermines the Secure Aggregation protocol
o Allows a central server to recover individual model updates from sums + client participation counts
m Individual model updates reveal training data, violating clients’ data privacy’
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1. Zhuetal, Deap Leakage from Gradients, NeurIPS 2019
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e Core assumptions:
1. Central server is adversarial and can fix the global model across rounds
2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency
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e Core assumptions:
1. Central server is adversarial and can fix the global model across rounds

2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency!

1.  Bonawitz et al,, Towards Federated Learning at Scale: System Design, SysML 2019
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e Matrix factorization problem

PG = Gy,

e To solve we recover columns of P individually

Find py s.t.
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Method: Gradient Disaggregation by Reconstructing the User
Participant Matrix

Find pg s.t. Find pg s.t.

NUZ(nggg)pk = — min "NUZ(Ggggregated)pk“Q
pr € {0,1}" pr € {0,1}"
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Method: Gradient Disaggregation by Reconstructing the User
Participant Matrix

e Gradient Disaggregation Optimization

o  Framed as matrix factorization problem :
m  Utilize user participation frequency to enable recovering P Find py s.t.
o  Formulate as an integer linear programming problem

. T 2
m Leverage powerful integer linear programming solvers 111111 ‘ ‘N ul (Gag gre gated)pk ‘ ‘

o Recover columns of P individually n
m  Parallelize across users Pk € {0’ 1}
o Modify the optimization formulation to account for C s = G = 0

m  Missing / partial / inexact constraints, etc
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e Constraint Granularity
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Results: Success Rate of Recovering P
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Table 1. Fraction of P reconstructed with FedAvg model updates
(users=100, rounds=200, Cifar10 LeNet, participant rate=.1, gran-
ularity=10, time limit per column=10 min). We exactly reconstruct
P in the majority of FedAvg settings.




Results: Qualitative Results

e Gradient Inference Attack

o Inference attack with and without disaggregation

Figure 8. Recovered images from FedAvg updates across users
(top image is closest ground truth). Gradient disaggregation en-
ables high quality inversion on noisy FedAvg updates aggregated
across many users; unlike disaggregation on exact gradients, disag-

gregation on noisy updates recovers the average update submitted
across rounds, and we are able to reconstruct high quality images
on noisy updates aggregated across many users. Without disag-
gregation, inversion on updates aggregated over multiple users
(a) users=1 (no (b) users=10 (no (¢)  users=100 (users=10) Sipnincattyocetces qUAlIs:
disaggregation) disaggregation) (disaggregated)
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Conclusion

e Gradient disaggregation attack on Federated Learning
o  Framed as matrix factorization & integer linear programming
o  Leverage user participation frequency to make intractable problem tractable
e Secure aggregation is not enough
o  Leveraging side channel information, a central server may uncover individual user gradients
o Across multiple observations, sum reveal significant information about its terms
e Dangers of side channel information in Federated Learning systems

o  Seemingly benign metrics used to monitor device performance can be dangerous

e Possible defenses
o Add even more noise through differential privacy
o  Eliminate side channel information (but must balance this w/ cost to utility!)
o  Homomorphic encryption



