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Background: Federated Learning
● How does Federated Learning Work?

○ 1. Central server broadcasts global model → clients

○ 2. Clients compute model update on local training data 

○ 3. Server securely aggregates model updates via Secure Aggregation¹ → central server

Central Server Clients

1. Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017



Background: What is the Gradient Disaggregation Attack?
● Gradient Disaggregation

○ Undermines the Secure Aggregation protocol

○ Allows a central server to recover individual model updates from sums + client participation counts

■ Individual model updates reveal training data, violating clients’ data privacy¹

Central Server Clients

1. Zhu et al., Deap Leakage from Gradients, NeurIPS 2019



Method: Threat Model
● Core assumptions:

1. Central server is adversarial and can fix the global model across rounds

2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency



Method: Threat Model
● Core assumptions:

1. Central server is adversarial and can fix the global model across rounds

2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency



Method: Threat Model
● Core assumptions:

1. Central server is adversarial and can fix the global model across rounds

2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency



Method: Threat Model
● Core assumptions:

1. Central server is adversarial and can fix the global model across rounds

2. Client selection is somewhat random and a fraction is selected to participate

3. Server has access to side channel information: client participation frequency¹

1. Bonawitz et al., Towards Federated Learning at Scale: System Design, SysML 2019



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix

User Participant Matrix P Per User Updates G

i

Aggregated Updates G

agg

1   0   0   1      ...                 1

0   0   1   1      ...                 1

0   1   1   1      ...                 0

                      ...                 

G

1

G

2

G

n

                      ...                 

G

agg1

G

agg2

G

aggn

                      ...                 



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix

User Participant Matrix P Per User Updates G

i

Aggregated Updates G

agg

1   0   0   1      ...                 1

0   0   1   1      ...                 1

0   1   1   1      ...                 0

                      ...                 

G

1

G

2

G

n

                      ...                 

G

agg1

G

agg2

G

aggn

                      ...                 

Round 1

Round 2

Round n

User 1 User 2 User 3 User 4 User k



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix

User Participant Matrix P Per User Updates G

i

Aggregated Updates G

agg

1   0   0   1      ...                 1

0   0   1   1      ...                 1

0   1   1   1      ...                 0

                      ...                 

G

1

G

2

G

n

                      ...                 

G

agg1

G

agg2

G

aggn

                      ...                 

Round 1

Round 2

Round n

User 1 User 2 User 3 User 4 User k



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix

User Participant Matrix P Per User Updates G

i

Aggregated Updates G

agg

1   0   0   1      ...                 1

0   0   1   1      ...                 1

0   1   1   1      ...                 0

                      ...                 

G

1

G

2

G

n

                      ...                 

G

agg1

G

agg2

G

aggn

                      ...                 



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix

User Participant Matrix P Per User Updates G

i

Aggregated Updates G

agg

1   0   0   1      ...                 1

0   0   1   1      ...                 1

0   1   1   1      ...                 0

                      ...                 

G

1

G

2

G

n

                      ...                 

G

agg1

G

agg2

G

aggn

                      ...                 



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix
● Matrix factorization problem



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix
● Matrix factorization problem

● To solve we recover columns of P individually

Slawski et al., Matrix factorization with Binary 

Components, NeurIPS 2013



Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix
● Matrix factorization problem

● To solve we recover columns of P individually

Slawski et al., Matrix factorization with Binary 

Components, NeurIPS 2013

Intractable
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Method: Gradient Disaggregation by Reconstructing the User 
Participant Matrix
● Gradient Disaggregation Optimization

○ Framed as matrix factorization problem

■ Utilize user participation frequency to enable recovering P

○ Formulate as an integer linear programming problem

■ Leverage powerful integer linear programming solvers

○ Recover columns of P individually

■ Parallelize across users

○ Modify the optimization formulation to account for

■ Missing / partial / inexact constraints, etc
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Results: Success Rate of Recovering P
● Number of Rounds 

● Number of Users
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○ Changes in training data
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● Noise

○ Federated averaging
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Conclusion
● Gradient disaggregation attack on Federated Learning 

○ Framed as matrix factorization & integer linear programming

○ Leverage user participation frequency to make intractable problem tractable

● Secure aggregation is not enough

○ Leveraging side channel information, a central server may uncover individual user gradients

○ Across multiple observations, sum reveal significant information about its terms

● Dangers of side channel information in Federated Learning systems

○ Seemingly benign metrics used to monitor device performance can be dangerous

● Possible defenses

○ Add even more noise through differential privacy

○ Eliminate side channel information (but must balance this w/ cost to utility!)

○ Homomorphic encryption


