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Learning de-identified representations of
orosody from raw audio
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The DAMMP benchmark

CALC DAMMP  Dataset Target Description Size Ref.
; Interviews by a
- [\/ DAIGWOZ, — ree virtual ~300 interviews  (Oraich etal.
diagnoses . . 2014)
Interviewer
Alzheimer’s Picture ~200 (Luz et al.,
) v RDREbS disease diagnoses  description tasks descriptions 2020)
V MUS{ARD S label Acted scenes i ALK (Castro et al.,
- arcasm labels fioii TV, shiowe .4k utterances 2019)
~20k utterances
CMU- 3 Spoken product (Zadeh et al.,
Vv vV MOSEI Sentiment labels reviews from ~2k 2018)
speakers
Persuasiveness . . . (Park et al.,
Vv v POM labels Film reviews ~300 reviews 2014)
) ; ) " (Hernandez
4 TED-LIUM 3 TED talks 2.4k TED talks etal, 2018)
Single utterances ARSI
Vv - LRS2 - from BBCTV ~ ~140k utterances etal, 2018)
scenes
Real and acted ~100 hours of (Carletta et al.,
v i AMI ) meetings meetings 2005)
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Quantifying identifiability of data

NOVOIC
Test trials EER, Cyjr, C™ Enrollment
1 M«I"Mc{ ASVeval Fﬂl{l‘»)tﬂ»
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2 *‘N"'M‘*‘ Anonymization |— [ e ASVeval F“I{'MH‘
i
EER, Cyyr, CI"
3 ﬁ“MH— Anonymization ASVeval Anonymization —N”I"MH"
i
Tomashenko, Natalia, et al. "Introducing the VoicePrivacy initiative." arXiv preprint arXiv:i2005.01387 (2020).
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We have that D € [1/n, 00), where D = 1/n represents the worst possible de-identification and D — oo represents perfect
de-identification. This ratio is a function not only of the representations themselves but also of the model M (6) and the data

set D. As demonstrated in Voita & Titov (2020), the dependence of the codelength on model parameters is relatively light in
practice.



Inductive biases

Only use audio as input/targets

Downsample the audio to
500Hz

Align the input audio by words;
each word learns one prosodic
representation

Learn vector-quantized
representations

Contextualization of prosody
using e.g. a Transformer
encoder

Include up to 2s of preceding
silence in each audio word

Use a temporal convolutional
network to extract audio
features

Allow ~50*50*50 = 125k
quantized prosody states

Inductive bias

Prosody itself has predictable
temporal patterns.

(Non-timbral) prosody happens
<250Hz.

Prosody is strongly temporally
associated with/discretized by words.

There is a finite number of
semantically meaningful prosodic
states.

The semantic meaning of prosody is
contextual.

Time between words is part of
prosody.

Prosody is encoded in an audio signal.

There is a finite number of
semantically meaningful prosodic
states.

What does it do?

Learns prosody representations without having to use
words/phonemes as input data by relying on predicting temporal
patterns requiring strong representations of similar information.

Ensures the network is learning about prosody, not phonetics; makes
the input sequence for a word a computationally feasible length.

The prosody encoder creates one independent non-contextualised
representation per word.

Representations must be parsimonious to avoid ‘hiding’ nuisance
covariates in small details => robustness, reliability, generalisation and
de-identification.

Context-aware representations of time-series often make better
predictions; contextualization may be the key to disentangling
representation from time => audio-linguistic representations.

Representations encode information about the absolute/relative
speech rate.

Permits a large (1,280 frames) receptive field; learns patterns in
periodic signals naturally.

Expressive enough to represent e.g. 50 semantically meaningful
pitches (24 quarter-tones across 2 octaves), 50 semantically
meaningful pause lengths and 50 semantically meaningful word
rhythms.
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Rationale/assumption(s)

Predicting prosodic states based on prosody alone requires similar
prosody representations as predicting prosodic states using words.

Nyquist theorem on highest typical female f0 = 2*255Hz =~500Hz

Semantically meaningful prosody states are naturally discretized on
a per-word basis.

The most important information for making predictions during
self-supervised learning is prosodic.

Contextualisation makes stronger prosody representations for
predictions. Contextualization makes prosody representations with
weaker cross-temporal interactions, which will help with
audio-linguistic representation learning.

Speech rate baseline and temporal variations are an important
things to represent. Time preceding is more relevant to the word
than time following it.

TCNs well-suited to learning patterns in raw audio signals.

125k is enough states to represent most interesting prosody
information but not so many that nuisance covariates (e.g.
background noise) get represented.
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Results NOVOIC
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What is VQP representing? NOVOIC

TRILL wav2vec-2.0 vg-wav2vec Mockingjay VQP

AUC MDL AUC MDL AUC MDL AUC MDL \ AUC MDL
Pitch
Pitch 0.558 6365 0546 6388 0569 6349 0558 63.62 | 0.742  55.78
Rhythm
Intensity 0596 6348 0557 64.19 0567 64.10 0558 6420 | 0.662  60.97
Num. sylls 0.519  65.51 0.508 6558 0516 6548 0513 6550 | 0.616 63.13
Tempo
Artic. rate 0522 6519 0506 6526 0514 6519 0510 6529 | 0537  65.12

Speech rate 0532 6494 0515 6503 0519 6497 0519 65.01 0.541  64.88
Syll duration 0524 6544 0509 6552 0513 6548 0508 6549 | 0497 6547
Word duration  0.544 6540  0.522 6558 0539 6547 0536 65.50 | 0.749  54.58

Timbre
Formant f1 0.735 58.03 0.668 62.73 0.696 61.26  0.629 64.07 0.574 65.58
Formant 2 0.743 5743 0.643 63.11 0.666 62.95 0.586 64.87 0.514 65.60
Formant f3 0.779 54.39 0.667 62.24 0.688 6192  0.623 63.90 0.509 65.71
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Predicting brain disease from speech
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