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Abstract
Density Ratio: 

n Density Ratio 

𝑟∗ 𝑥 =
𝑝 𝑥
𝑞 𝑥

• The ratio of the two probability 
densities 𝑝 𝑥 and 𝑞(𝑥).

n The density ratio appears in 
many tasks in machine learning.

• Anomaly detection

• Domain adaptation etc.

Empirical BD minimization with neural networks:

→ The train loss often goes to −∞ due to − *𝔼"# 𝜕𝑓 𝑟 𝑋$ .

min
%∈ℋ

*𝔼() 𝜕𝑓 𝑟 𝑋* 𝑟 𝑋* − 𝑓 𝑟 𝑋* − *𝔼"# 𝜕𝑓 𝑟 𝑋$ .

n We call this phenomenon train loss hacking.

The causes of this problem are 

• (i) a too flexible model and (ii) finite samples.
→ The flexible model can overfit and leads the train loss to −∞.

- *𝔼() 𝜕𝑓 𝑟 𝑋* 𝑟 𝑋* − 𝑓 𝑟 𝑋*
→ Keep around 0.

- *𝔼"# 𝜕𝑓 𝑟 𝑋$ .

→ Goes to −∞.

How to estimate the density ratio?:

n Samples from two datasets:

𝑥$"# $+,
-!" ∼ 𝑝 𝑥 and 𝑥*() *+,

-#$
∼ 𝑞(𝑥)

n A naive method is to estimate the probability densities separately.

• Then, we construct an estimator as their fraction: 𝑟̂ 𝑥 = ./ 0
.1 0

.

n However, estimating the probability densities is not easy.

→ Various methods for direct DRE have been proposed.

• Ex. Hastie et al., (2001), Gretton et al., (2009), etc.

Ø Sugiyama et al. (2011) unified them from the Bregman divergence (BD) 
minimization perspective.

Objective function of direct DRE with BD minimization:

9BD2 𝑟 : = *𝔼() 𝜕𝑓 𝑟 𝑋* 𝑟 𝑋* − 𝑓 𝑟 𝑋* − *𝔼"# 𝜕𝑓 𝑟 𝑋$ ,

• *𝔼() *𝔼"# : sample averages over 𝑥*() *+,
-#$

∼ 𝑞(𝑥) 𝑥$"# $+,
-#$ ∼ 𝑝 𝑥 .

• 𝑓(𝑡) is a twice continuously differentiable convex function.

n Existing studies mainly estimate 𝑟∗ with linear models.

↔ Recently, neural networks are shown to be effective in many tasks.
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Density ra0o 𝑟 𝑥 = 𝑝(𝑥)/𝑞(𝑥)

Goal:

n Density ratio estimation with deep neural networks.

Issue: 

n Train loss often diverges when we use neural networks.

Contributions: 

• We detect the cause of this problem.

• We propose an empirical risk correction to mitigate this problem.

• Proposed method performs well in anomaly detection.

5. Non-negative BD Minimization
Nonnegative BD (nnBD):

n We find the relationship between empirical BD and 𝑅.

→ Based on this finding, we propose the nonnegative correction:
@nnBD2 𝑟 = *𝔼() ℓ,(𝑟(𝑋*) − 𝐶*𝔼"# ℓ,(𝑟(𝑋$) 3 +

*𝔼"# ℓ4 𝑟 𝑋$ .
• ℓ, 𝑟 𝑋 and ℓ4 𝑟 𝑋 are components of empirical BD.

• 𝑅 : The upper bound of the density ratio.

• 𝐶 is a constant such that 𝐶 > 1/𝑅.

Ø We call the corrected empirical BD nonnegative BD (nnBD).

n Direct DRE based on nnBD minimization: deep direct DRE (D3RE).

Ø D3RE significantly mitigates the train loss hacking problem.

AU
C

Epoch

−∞

Inlier-based outlier detection

• One of the settings of semi-supervised anomaly detection.

• Compute the AUROC for CIFAR-10 and FMNIST datasets.

4. Upper Bound of the Density Ratio
How to prevent train loss hacking?:

n − *𝔼"# 𝜕𝑓 𝑟 𝑋$ → −∞ means 𝑟 𝑋$ → ∞.

→ For 𝑥$"#, we want to prevent 𝑟 𝑥$"# → ∞.

The Role of the upper bound of the density ratio:

Ø Suppose there exists a constant 𝑅 > 0 such that ∀ 𝑥 𝑟∗ 𝑥 < 𝑅

n Use a model satisfying 𝑟 𝑥 < 𝑅?   Ex. 𝑟 𝑥 = 5
,3)67 82 0

．

n Even when 𝑟 𝑋$ is a bounded function, 

• 𝜕𝑓 𝑟 𝑋$ sticks to the upper bound because it is monotonically 

increasing function

n Let 𝐶 > 0 be a constant such that 𝐶 > 1/𝑅
n Let us decompose the empirical BD as

*𝔼() 𝜕𝑓 𝑟 𝑋* 𝑟 𝑋* − 𝑓 𝑟 𝑋* − *𝔼"# 𝜕𝑓 𝑟 𝑋$
= *𝔼() ℓ,(𝑟(𝑋*)) − 𝐶*𝔼"# ℓ,(𝑟(𝑋*)) + *𝔼"# ℓ4 𝑟 𝑋$ .

• ℓ, 𝑡 and ℓ4 𝑡 are components of empirical BD.

n If 𝑟∗ 𝑥 < 𝑅,
𝔼() ℓ,(𝑟(𝑋*)) − 𝐶𝔼"# ℓ,(𝑟(𝑋*))

becomes positive because 

𝑞 𝑥 −
𝑝 𝑥
𝑅

= 𝑞 𝑥 1 −
𝑟∗ 𝑥
𝑅

> 0 ∀ 𝑥

holds from 𝑟∗ 𝑥 < 𝑅, ℓ, 𝑡 > 0, and

𝔼() ℓ,(𝑟(𝑋*)) − 𝐶𝔼"# ℓ, 𝑟 𝑋* = ∫ ℓ, 𝑟 𝑋* 𝑞 𝑥 −
𝑝 𝑥
𝑅

d𝑥 > 0.


