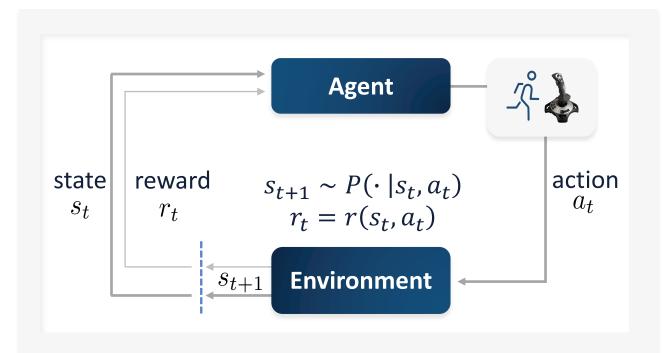


Zihan Zhang Yuan Zhou Xiangyang Ji

2021/7/21

Discounted MDP



 $\begin{array}{c} \text{Infinite horizon} \\ \text{with discounted factor } \gamma < 1 \end{array}$

A policy π :

 π : States(S) \rightarrow Actions (A), $a = \pi(s)$

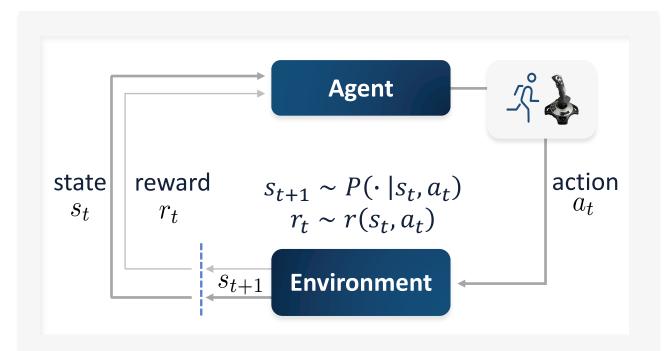
Goal: maximize value function

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_{t+1} \mid s_1 = s, \pi\right]$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_{t+1} \mid s_1 = s, a_1 = a, \pi\right]$$

$$V^*(Q^*) = V^{\pi^*}(Q^{\pi^*})$$
: value (Q) function of opt policy

ϵ -Sample Complexity



Given $\epsilon \in (0, \frac{1}{1-\gamma})$, ϵ -sample complexity is the number of steps when an ϵ -suboptimal policy is executed:

$$\sum_{t\geq 1} \mathbf{I}[V^{\pi_t}(s_t) < V^*(s_t) - \epsilon]$$

• the number of trials needed to learn an ϵ -optimal policy

Main Result

• **Theorem 1:** With variance reduction: For any $\epsilon \in \left(0, \frac{(1-\gamma)^{14}}{S^2A^2}\right]$ and $\delta > 0$, with probability $1 - \delta$, the (ϵ, p) -sample complexity of UCB-Multistage is bounded by

$$\tilde{O}\left(\frac{SA\ln(1/\delta)}{\epsilon^2(1-\gamma)^3}\right)$$

• **Theorem 2**: Without variance reduction: For any $\epsilon \in \left(0, \frac{1}{1-\gamma}\right]$ and $\delta > 0$, with probability $1-\delta$, the (ϵ,p) -sample complexity of UCB-Multistage is bounded by

$$\tilde{O}\left(\frac{SA\ln(1/\delta)}{\epsilon^2(1-\gamma)^{5.5}}\right)$$

Existing Results

	Algorithm	Sample Complexity	Space Complexity
Model-based	R-max [Kakade,2003]	$\tilde{O}(S^2A\ln(1/\delta)\epsilon^{-3}(1-\gamma)^{-6})$	$O(S^2A)$
	MoRmax [Szita & Szepesvari 2010]	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-6})$	
	UCRL- γ [Lattimore & Hutter, 2012]	$\tilde{O}(S^2A\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-3})$	
Model-free	Infinite <i>Q</i> -learning with UCB [Dong et al., 2019]	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-7})$	O(SA)
	UCB-Multistage-Advantage (our result)	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-3})$ for $\epsilon < (SA)^{-2}(1-\gamma)^{14}$	
	UCB-Multistage (our result)	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-5.5})$	
	Delayed <i>Q</i> -learning [Strehl et al., 2006]	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-4}(1-\gamma)^{-8})$	
	Median-PAC (Pazis et al., 2016)	$\tilde{O}(SA\ln(1/\delta)\epsilon^{-2}(1-\gamma)^{-4})$	$O(SA\epsilon^{-2}(1-\gamma)^{-4})$
Lower bound	[Lattiore & Hutter, 2012]	$\Omega(SA\epsilon^{-2}(1-\gamma)^{-3})$	

All bounds are in Big-O / Big-Omega and ignore logarithmic factors.

Pseudo-Regret

- Pseudo-regret vector: $\phi_t(s) = V_t(s) r(s, \pi_t(s)) \gamma P_{s,\pi_t(s)} V_t$
- Assuming V_t is always optimistic, i.e., $V_t \ge V^*$

$$V^*(s_t) - V^{\pi_t}(s_t) \le V_t(s_t) - V^{\pi_t}(s_t) = \gamma P_{\pi_t}(V_t - V^{\pi_t}) + \phi_t = \sum_{i=0}^{\infty} (\gamma P_{\pi_t})^i \phi_t$$

- $V^*(s_t) V^{\pi_t}(s_t) > \epsilon$ implies that $\mathbf{1}_{s_t} \sum_{i=0}^{\infty} (\gamma P_{\pi_t})^i \phi_t > \epsilon$
- Assuming $\pi_{t+i} = \pi_t$ for $1 \le i \le H \coloneqq \max\{\frac{\ln(8/((1-\gamma)\epsilon))}{\ln(1/\gamma)}, \frac{1}{1-\gamma}\}$

$$\mathbf{1}_{s_t} \sum_{i=0}^{\infty} (\gamma P_{\pi_t})^i \phi_t \le \mathbf{E} \left[\sum_{i=0}^{H-1} \gamma^i \phi_t(s_{t+i}) \right] + \frac{\epsilon}{8}$$

 V_t : the value function at time t P_{π_t} : the transition matrix of π_t $\mathbf{1}_s$: $[0,0,\ldots,1,\ldots,0]^T$ (1 is at the s-th coordinate)

Pseudo-Regret

- $V^*(s_t) V^{\pi_t}(s_t) > \epsilon$ implies $\sum_{i=0}^{H-1} \gamma^i \phi_t(s_{t+i}) > \frac{7\epsilon}{8}$ in expectation
- $\sum_{i=0}^{H-1} \gamma^i \, \phi_t(s_{t+i}) > \frac{7\epsilon}{8} \text{ implies } \sum_{i=0}^{H-1} \gamma^i \, \text{clip}(\phi_t(s_{t+i}), \frac{\epsilon}{8}) \ge \frac{3\epsilon}{4}$
- With concentration inequalities in hand, it suffices to bound

$$\sum_{t\geq 1} \sum_{i=0}^{H-1} \gamma^i \operatorname{clip}(\phi_t(s_{t+i}), \frac{\epsilon}{8}) \approx H \sum_{t\geq 1} \operatorname{clip}(\phi_t(s_t), \frac{\epsilon}{8})$$

The sample complexity is then bounded by

$$\frac{4H}{3\epsilon} \sum_{t>1} \operatorname{clip}(\phi_t(s_t), \frac{\epsilon}{8})$$

 $clip(x, y) := x \mathbb{I}[x \ge y]$

Stage-Based Framework

- Let $e_1=H$, $e_{i+1}=\lfloor(1+1/H)e_i\rfloor$; $L=\left\{\sum_{i=1}^j e_i \mid j\geq 1\right\}$: the grid marking the end of the stages
- Algorithm only updates $Q_t(s, a), V_t(s)$ when $n_h(s, a) \in L$

```
For episode t=1,2,3,...: \pi_t \leftarrow \text{greedy policy according to } Q; \text{ execute } \pi_t For h=1,2,3,...,H: If n_t(s_t,a_t) \in L then (s,a) \leftarrow (s_t,a_t) Q_t(s,a) \leftarrow \min\left\{r_h(s,a) + \frac{1}{\breve{n}_t(s,a)}\sum_{\ell \in \breve{n}_t(s,a)} V_\ell(s_{\ell+1}) + b_t(s,a), Q_{t-1}(s,a)\right\} b_t(s,a) = \widetilde{\Theta}\left(H \cdot \breve{n}_t(s,a)^{-1/2}\right) V_t(s) \leftarrow \max_a Q_t(s,a)
```

 V_t , Q_t : the V, Q vectors at the beginning of step t

The stage-based framework is used in our previous work [Zhang, Zhou and Ji, 2020]

Multi-Stage Learning

By the update rule $\phi_t(s_t) \leq 2b_t(s_t, a_t) + \gamma P_{s_t, a_t}(V_{\rho_t(s_t, a_t))} - V_t)$ bonus term gap of value function

Observation

- Limitation of model-free learning: only can remember recent value function;
- Stage-based update: regret depends on the difference between the remembered value function and current value function;

Solution

Accelerated updates: reduce the gap of time reduce the gap of value function

 $\rho_t(s,a)$: the time the last stage of (s,a) starts.

Thank You