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Spurious Correlations

Waterbirds

CelebA

MultiNLI

Common training examples

y: waterbird
a: water
background

y: blond hair
a: female

y: contradiction
a: has negation
(P) The economy
could be still better.
(H) The economy has
never been better.

UUNUING S

y: landbird
a: land
background

y: dark hair “~ twuyg
a: male

y: entailment

a: no negation

(P) Read for Slate's take
on Jackson's findings.
(H) Slate had an opinion
on Jackson's findings.

Test examples

y: waterbird
a: land
background

y: blond hair
a: male

y: entailment

a: has negation

(P) There was silence

for a moment.

(H) There was a short period
of time where no one spoke.

Sagawa et al. (2019): Distributionally Robust Neural Networks



Domain Generalization
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Peters et al. (2016): Causal Inference using Invariant Prediction
Goal: Learn a single classifier with training data sampled from M domains that
generalizes well to data from unseen domains

Assumption: There exist stable (causal) features X; which lead to an optimal
classifier invariant to the changes in domains



Our Contributions

An object-invariant condition for domain generalization that highlights a key
limitation of previous approaches

When object information is not available, a two-phase iterative algorithm to
approximate object-based matches



Prior works based on domain invariant
representation learning



Domain Invariant Representations

Learning representation independent of domain (¢(x) L d)
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Ganin et al. (2016): Domain Adversarial Training
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Failure Case: Domain and Label Correlated

d and y are
independent

Feature Space

d and y are Feature Space

O .
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Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint

Akuzawa et al. (2019): Dependence between domain (d) and label (y) leads to
tradeoff between accuracy (predicting y from ¢(x)) and invariance (¢(x) L d)



Failure Case: Domain and Label Correlated

dandy are Feature Space dandy are Feature Space
independent dependent
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Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint

Akuzawa et al. (2019): Dependence between domain (d) and label (y) leads to
tradeoff between accuracy (predicting y from ¢(x)) and invariance (¢(x) L d)

Class-conditional domain invariant representations

Sun et al. (2016), Li et al. (2018): Learning representation independent of domain
conditioned on class label (¢p(x) L d | y)



Is the class-conditional domain invariance
objective correct?



Simple Counter Example
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Simple Counter Example
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Simple Counter Example

3 |
le,
X1 =X+ g%, = ag 1S
where x, and a, are 1.9 ¢(x1,x2) = x1
unobserved 2" N N\ 58 N N satisfies ¢p(x) L d |y
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N EQ‘ But the optimal
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Simple Counter Example

X1 =Xt ag;x, =ag

where x,. and a, are
unobserved

Invariant Predictor

y = f(xc)z I(xc2 0)

Explanation:

3 |
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o EQ‘ But the optimal
X< 11 % % i% % 74 classifier on it gets
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Distribution of stable features p(x.|y) changes across domains



Distribution of Stable Features Matter

Proposition: If P(X.|Y) remains the same across domains, then the class-
conditional domain invariance yields a generalizable classifier such that the learnt
representation ¢ (x) is independent of the domain given x,



Distribution of Stable Features Matter

Proposition: If P(X.|Y) remains the same across domains, then the class-
conditional domain invariance yields a generalizable classifier such that the learnt
representation ¢ (x) is independent of the domain given x,

Implication: ¢(x) depends only on the stable features x, if P(X.|Y) does not
change across domains

New Invariance Criteria: ¢(x) L d | x,



How to identify stable features?



Slab Dataset

Slab Feature (x2)

Source Domain 1
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Harshay et al. (2020): Simplicity Bias in Neural Networks



Slab Dataset

Slab Feature (x2)

Stable Feature

Source Domain 1

100

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75 A

-1.00

G Ay, BRI
T T
MRy RN
PEHADRRWW,
PR

D 2y

.
:«.‘.) - '. "-s

PIARRRAT TR DAL R * 2 SO Ry o

T

—1.00 —075 —050 —OZS 000 0125 OISO 0|75 l(IJO
Linear Feature (x1)

Spurious Feature
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Slab Dataset

Slab Feature (x2)

Stable Feature

Source Domain 1
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Conditioning on stable features

Source 2

Method Source 1 Target

ERM 100.0 (0.0)  96.0 (0.25) | 57.6 (6.58)
DANN 99.9 (0.07) 94.8(0.25) | 53.0(1.41)
MMD 99.9 (0.01) 95.9(0.27) | 62.9(5.01)
CORAL 99.9 (0.01) 96.0(0.27) | 63.1(5.86)
RandMatch | 100.0 (0.0)  96.1 (0.22) | 59.5 (3.50)
CDANN 99.9 (0.01) 96.0(0.27) | 55.9(2.47)
C-MMD 99.9 (0.01) 96.0(0.27) | 58.9(3.43)
C-CORAL 99.9 (0.01) 96.0(0.27) | 64.7 (4.69)
PerfMatch 999 (0.05) 97.8(0.28) | 77.8 (6.01)




Conditioning on stable features

Domain Invariant
Representations

Class-Conditional
Domain Invariant
Representations

¢ (x) independent of
domain given stable
(slab) feature

Source 2

ERM

MMD

~ RandMatch

Method Source 1 Target
100.0 (0.0)  96.0 (0.25) | 57.6 (6.58)
DANN 99.9 (0.07) 94.8(0.25) | 53.0(1.41)
99.9 (0.01) 95.9(0.27) | 62.9(5.01)
CORAL 99.9 (0.01) 96.0(0.27) | 63.1(5.86)
100.0 (0.0)  96.1 (0.22) | 59.5 (3.50)
CDANN 99.9 (0.01) 96.0(0.27) | 55.9 (2.47)
C-MMD 99.9 (0.01) 96.0(0.27) | 58.9 (3.43)
C-CORAL | 99.9(0.01) 96.0(0.27) | 64.7 (4.69)
PerfMatch 99.9 (0.05) 97.8(0.28) | 77.8 (6.01)




Conditioning on stable features

Domain Invariant
Representations

Class-Conditional
Domain Invariant
Representations

¢ (x) independent of
domain given stable
(slab) feature

Source 2

ERM

MMD

Method Source 1 Target
100.0 (0.0) 96.0(0.25) | 57.6 (6.58)
DANN 99.9 (0.07) 94.8(0.25) | 53.0(1.41)
99.9 (0.01) 95.9(0.27) | 62.9 (5.01)
CORAL 999 (0.01) 96.0(0.27) | 63.1 (5.86)
RandMatch 100.0 (0.0) 96.1 (0.22) | 59.5(3.50)
CDANN 99.9 (0.01) 96.0(0.27) | 55.9(2.47)
C-MMD 99.9 (0.01) 96.0(0.27) | 58.9(3.43)
C-CORAL 99.9 (0.01) 96.0(0.27) | 64.7 (4.69)
PerfMatch 999 (0.05) 97.8(0.28) | 77.8 (6.01)

Fail to learn the
stable (slab)
feature

Better than prior
approaches at
learning the stable
(slab) feature



Formalizing the intuition with causal graphs



Causal Graph for Data Generating Process

Observed Unobserved May or may not
be observed



Causal Graph for Data Generating Process

Different views
of the camera

Latent features
of person A

Image taken by camera
of person A

Observed Unobserved May or may not
be observed



Causal Graph for Data Generating Process

Latent features
of person A

Causal (stable)
features

No intervention
on Node Y

Observed

Unobserved May or may not
be observed

Domain represents
interventions

Different views
of the camera

Domain dependent
features

Image taken by camera
of person A



Correct Invariance Criteria

Intervention domain d

0,x.,d,x%

Intervention domain d’ /
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Correct Invariance Criteria

Intervention domain d

0,x.,d,x%

Intervention domain d’ /

1 Nd
0,X:,,d,x

For each observed x4, there are a set of

counterfactual inputs x% where d # d’ . but
both have similar causal features x,

Invariance Criteria: X, L D | O




How to satisfy the invariance criteria?



Match Counterfactuals

Intervention domain d

0,x.,d,x%

Intervention domain d’ /

1 Nd
0,X:,,d,x




Match Counterfactuals

Intervention domain d

0,x.,d,x%

Intervention domain d’ /

1 Nd
0,X:,,d,x

Invariance Constraint:

Zﬂ(j’k)ﬂDist(c/J(xjd),cp(x,f )) =0;Q=1If ojd = of,
Q = 0 otherwise

Note: The causal features (X.) are unidentifiable and
solving the above objective is not guaranteed to return
the true causal features.



Perfect Match Approach

Aim: Learn representations ¢ (X) that satisfy the invariance criteria and are
informative of the label Y across domains D



Perfect Match Approach

Aim: Learn representations ¢ (X) that satisfy the invariance criteria and are
informative of the label Y across domains D

fperfectmatcnh = arg rirllipn 2iaLa(h(d(X),Y) + Ax Zﬂ(j;k)=1 Dist (qb(xjd)' gb(xf(l’))

Theorem: It can be shown the optimal solutions ¢(X) = X. and f = f* are
contained in the set of solutions obtained by solving f,erfectmatch



Perfect Match: Application

Training Domains Test Domains

Rotation Angles: 15, 30, 45, 60, 76 Rotation Angles: 0, 90

« Match Function Known: Same data point rotated by different angle across
domains shares the same causal (stable) feature, hence the same base object

« Perfect match is applicable when we have self augmentations



How to proceed when we do not know the perfect
matches across domains?



MatchDG: Matching without known objects

Goal: Learn a match function s.t. Q(x,x") = 1 when Dist(x,, x;) is low

Assumption: Let (xZ, y), (xjd',y) be any two points that belong the same class and

let (xZ,y') be any other point that has a different class label. Then the distance in
causal features between (x;, x;) and is smaller than that between (x;, x;) or (x;, xy)



MatchDG: Matching without known objects

Goal: Learn a match function s.t. Q(x,x") = 1 when Dist(x,, x;) is low

Assumption: Let (xZ, y), (xjd',y) be any two points that belong the same class and

let (xZ,y') be any other point that has a different class label. Then the distance in
causal features between (x;, x;) and is smaller than that between (x;, x;) or (x;, xy)

Data___|Label | Domain _ Assumption
1

1

x1 1 o . 1 .2 : 1 .4
= ) ) 2 Dist(xz,x:) < Dist(xz, x7)
Dist(x},x?) < Dist(x?,x%)
X3 1 2 o' Dist(x}, x3) < Dist(x}, x¥)
x* 0 2 03 Dist(x}, x3) < Dist(x2,x})



MatchDG: Matching without known objects

Contrastive Loss:

» Positive Matches: Specific data points from a different domain that share the
same class label as the anchor

« Negative Matches: Any data point with a different class label from the anchor



MatchDG: Matching without known objects

Contrastive Loss:

» Positive Matches: Specific data points from a different domain that share the
same class label as the anchor

« Negative Matches: Any data point with a different class label from the anchor

mmm Contrastive Loss with x' as anchor
1

1 1

X 1 0
X2 1 ) )2 Positive Match(x!)= x?
Negative Match(x!)= x*
x3 1 2 ol
4 0 2 03 m(gn Dist(¢d(x1), p(x?)) — Dist(¢p(x1), p(x*))



MatchDG: Matching without known objects

Iterative Contrastive Learning:

 Positive matches inferred using Q are updated during training based on the
nearest same-class data points in the representation space ¢

* |terative updates aim to account for the intra-class variance across domains



MatchDG: Matching without known objects

Iterative Contrastive Learning:

 Positive matches inferred using Q are updated during training based on the
nearest same-class data points in the representation space ¢

* |terative updates aim to account for the intra-class variance across domains

mmm Updated positive match for x!
1

1 1

2 min Dist(p(x1), p(xh)) vxt € d?,yt = y!

© © o O

1

1 2

3 1 2
0 2

s s SR



MatchDG: Matching without known objects

Iterative Contrastive Learning:

 Positive matches inferred using Q are updated during training based on the
nearest same-class data points in the representation space ¢

* |terative updates aim to account for the intra-class variance across domains

mmm Contrastive Loss with updated match
1 1

1

X 1 0
2 ” . 5 Positive Match(x!)= x3
* ? Negative Match(x!)= x*
x3 1 2 ol
4 0 5 o3 m(gn Dist(¢d(x1), p(x3)) — Dist(¢p(x1), p(x*))



MatchDG: Matching without known objects

MatchDG Phase 1: Learn a match function Q using iterative contrastive learning

MatchDG Phase 2: Substitute () learnt using Phase 1 in the perfect match loss

fperfectmatcnh = arg rirllipn 2alLla(h(p(X),Y) + A Zﬂ(j;k)=1 Dist (gb(xjd)’ qb(xg’))



Evaluation on benchmark datasets



MatchDG: OOD Accuracy

Dataset Best Rand MatchDG | PerfMatch
Prior | Match Hybrid

Rot MNIST (5) 93.0 94.5 93.4 95.1 96.0

Rot MNIST (3) 76.2 7.7 78.3 83.6 89.7
Fashion MNIST (5) 77.9 78.7 77.0 80.9 - 81.6
Fashion MNIST (3) 36.1 37.8 38.4 43.8 - 54.0
PACS ResNet-18 81.7 85.2 81.9 83.2 84.4 -

PACS ResNet-50 85.7 87.8 85.5 86.1 87.5 -



MatchDG: OOD Accuracy

Dataset Best Rand MatchDG | PerfMatch
Prior | Match Hybrid

Rot MNIST (5) 93.0 94.5 93.4 95.1 96.0

Rot MNIST (3) 76.2 7.7 78.3 83.6 89.7
Fashion MNIST (5) 77.9 78.7 77.0 80.9 - 81.6
Fashion MNIST (3) 36.1 37.8 38.4 43.8 - 54.0
PACS ResNet-18 81.7 85.2 81.9 83.2 84.4 -
PACS ResNet-50 85.7 87.8 85.5 86.1 87.5 -

Gap between MatchDG and baselines
increases with fewer training domains



MatchDG: OOD Accuracy

Dataset Best Rand MatchDG | PerfMatch
Prior | Match Hybrid

Rot MNIST (5) 93.0

Rot MNIST (3) 76.2
Fashion MNIST (5) 77.9
Fashion MNIST (3) 36.1

PACS ResNet-18 81.7
PACS ResNet-50 85.7

Gap between MatchDG and baselines
increases with fewer training domains

94.5

7.7
78.7
37.8
85.2
87.8

93.4 95.1

78.3 83.6

77.0 80.9 -
38.4 43.8 -
81.9 83.2 84.4
85.5 86.1 87.5

Simple matching methods competitive to the
state-of-the-art methods on PACS

MatchDG improves over DomainBed (ERM)
with ResNet50 architecture

96.0

89.7
81.6
54.0

>




MatchDG: Stable Features

Dataset Overlap Top 10 Mean
(%) Overlap (%) Rank
ERM

15.8 48.8 27.4
Rotated MatchDG 28.9 64.2 18.6
MNIST (Default)
MatchDG 47 4 83.8 6.2
(PerfMatch)
ERM 2.1 11.1 224.3
Fashion MatchDG 17.9 43.1 89.0
MNIST (Default)
MatchDG 56.2 87.2 7.3

(PerfMatch)



MatchDG: Stable Features

m

Fraction of ground
truth matches in the
learnt match function

ERM

MatchDG
(Default)

MatchDG
(PerfMatch)

ERM

MatchDG
(Default)

MatchDG
(PerfMatch)

Rotated
MNIST

Fashion
MNIST

Overlap
(%)

15.8
28.9

47.4

2.1
17.9

56.2

Top 10
Overlap (%)

48.8
64.2

83.8

11.1
43.1

87.2

27.4
18.6

6.2

2243
89.0

7.3

Mean position of
ground truth matches
in the learnt match
function



MatchDG: Stable Features

Fraction of ground
truth matches in the
learnt match function

Mean position of
ground truth matches
in the learnt match

function
Dataset Overlap Top 10
(%) Overlap (%)

ERM 15.8 48.8 274
Rotated MatchDG 28.9 64.2 18.6
MNIST (Default)
MatchDG has about MatchDG 47 .4 83.8 6.2 MatchDG prOV_ideS better
50% top-10 overlap (PerfMatch) match fu_nctlon than
on both datasets baseline ERM
ERM 2.1 1.1 224 .3
Fashion MatchDG 17.9 43.1 89.0
MNIST (Default)
MatchDG 56.2 87.2 7.3

(PerfMatch)



MatchDG: Zero Training Error

Rot MNIST Fashion MNIST Rot MNIST Fashion MNIST
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— ERM - ERM: Perfect Train Acc — ERM ERM: Perfect Train Acc
IRM - IRM: Perfect Train Acc MatchDG  ------ MatchDG: Perfect Train Acc

« Zero training error does not imply similar representations within each class

» Methods with regularization based on comparing loss across domains such as
IRM can be satisfied by ERM as the training error goes to zero



Chat more with us during the poster session!



