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Spurious Correlations

Sagawa et al. (2019): Distributionally Robust Neural Networks



Domain Generalization

Goal: Learn a single classifier with training data sampled from M domains that 
generalizes well to data from unseen domains

Assumption: There exist stable (causal) features 𝑋! which lead to an optimal 
classifier invariant to the changes in domains

Peters et al. (2016): Causal Inference using Invariant Prediction



Our Contributions

An object-invariant condition for domain generalization that highlights a key 
limitation of previous approaches

When object information is not available, a two-phase iterative algorithm to 
approximate object-based matches



Prior works based on domain invariant 
representation learning



Domain Invariant Representations
Learning representation independent of domain (𝜙 𝑥 ⊥ 𝑑)

Ganin et al. (2016): Domain Adversarial Training 



Failure Case: Domain and Label Correlated

Akuzawa et al. (2019): Dependence between domain (𝑑) and label (𝑦) leads to 
tradeoff between accuracy (predicting 𝑦 from 𝜙(𝑥)) and invariance (𝜙 𝑥 ⊥ 𝑑)

Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint



Failure Case: Domain and Label Correlated

Akuzawa et al. (2019): Dependence between domain (𝑑) and label (𝑦) leads to 
tradeoff between accuracy (predicting 𝑦 from 𝜙(𝑥)) and invariance (𝜙 𝑥 ⊥ 𝑑)

Class-conditional domain invariant representations
Sun et al. (2016), Li et al. (2018):  Learning representation independent of domain 
conditioned on class label (𝜙 𝑥 ⊥ 𝑑 | 𝑦)

Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint



Is the class-conditional domain invariance 
objective correct?



Simple Counter Example
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unobserved

Invariant Predictor
𝑦 = 𝑓 𝑥" = 𝐼 𝑥" ≥ 0

𝜙 𝑥1, 𝑥2 = 𝑥1
satisfies 𝜙 𝑥 ⊥ d | y

But the optimal 
classifier on it gets 
62.5% test accuracy

Explanation: Distribution of stable features 𝑝(𝑥"|𝑦) changes across domains



Distribution of Stable Features Matter

Proposition: If 𝑃 𝑋" 𝑌 remains the same across domains, then the class-
conditional domain invariance yields a generalizable classifier such that the learnt 
representation 𝜙 𝑥 is independent of the domain given 𝑥"



Distribution of Stable Features Matter

Proposition: If 𝑃 𝑋" 𝑌 remains the same across domains, then the class-
conditional domain invariance yields a generalizable classifier such that the learnt 
representation 𝜙 𝑥 is independent of the domain given 𝑥"

Implication: 𝜙 𝑥 depends only on the stable features 𝑥" if 𝑃 𝑋" 𝑌 does not 
change across domains

New Invariance Criteria: 𝜙 𝑥 ⊥ 𝑑 | 𝑥"



How to identify stable features?



Slab Dataset

Harshay et al. (2020): Simplicity Bias in Neural Networks



Slab Dataset

Spurious FeatureStable Feature



Slab Dataset

Spurious FeatureStable Feature Low Noise in (𝑥1, 𝑦) 
relationship

High Noise in (𝑥1, 𝑦) 
relationship



Conditioning on stable features
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Domain Invariant 
Representations

Class-Conditional 
Domain Invariant 
Representations

𝜙(𝑥) independent of 
domain given stable 

(slab) feature



Conditioning on stable features

Domain Invariant 
Representations

Class-Conditional 
Domain Invariant 
Representations

𝜙(𝑥) independent of 
domain given stable 

(slab) feature

Fail to learn the 
stable (slab) 

feature

Better than prior 
approaches at 

learning the stable 
(slab) feature



Formalizing the intuition with causal graphs



Causal Graph for Data Generating Process

Observed Unobserved May or may not 
be observed
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Causal Graph for Data Generating Process

Observed Unobserved May or may not 
be observed

Latent features 
of person A 

Different views 
of the camera

Image taken by camera 
of person A

Causal (stable) 
features

Domain dependent 
features

No intervention 
on Node Y

Domain represents 
interventions



Correct Invariance Criteria

Intervention domain 𝑑

Intervention domain 𝑑%

𝑜, 𝑥" , 𝑑, 𝑥#

𝑜, 𝑥" , 𝑑$, 𝑥#
!



Correct Invariance Criteria

For each observed 𝑥!, there are a set of 
counterfactual inputs 𝑥!! where 𝑑 ≠ 𝑑" , but 
both have similar causal features 𝑥#

Invariance Criteria: 𝑋# ⊥ 𝐷 | 𝑂

Intervention domain 𝑑

Intervention domain 𝑑%

𝑜, 𝑥" , 𝑑, 𝑥#

𝑜, 𝑥" , 𝑑$, 𝑥#
!



How to satisfy the invariance criteria?



Match Counterfactuals

Intervention domain 𝑑

Intervention domain 𝑑%

𝑜, 𝑥" , 𝑑, 𝑥#

𝑜, 𝑥" , 𝑑$, 𝑥#
!



Match Counterfactuals

Invariance Constraint: 
∑$ %,' ()𝐷𝑖𝑠𝑡(𝜙 𝑥*! , 𝜙 𝑥+!

! ) = 0 ; Ω = 1 if 𝑜*! = 𝑜+!
!, 

Ω = 0 otherwise

Note: The causal features (𝑋,) are unidentifiable and 
solving the above objective is not guaranteed to return 
the true causal features.

Intervention domain 𝑑

Intervention domain 𝑑%

𝑜, 𝑥" , 𝑑, 𝑥#

𝑜, 𝑥" , 𝑑$, 𝑥#
!



Perfect Match Approach

Aim: Learn representations 𝜙(𝑋) that satisfy the invariance criteria and are 
informative of the label 𝑌 across domains 𝐷



Perfect Match Approach

Aim: Learn representations 𝜙(𝑋) that satisfy the invariance criteria and are 
informative of the label 𝑌 across domains 𝐷

𝑓%&'(&")*+)", = argmin
,,.

∑# 𝐿#(ℎ 𝜙 𝑋 , 𝑌 + 𝜆 ∗ ∑/ 0,1 23𝐷𝑖𝑠𝑡 𝜙 𝑥4# , 𝜙 𝑥5#
!

Theorem: It can be shown the optimal solutions 𝜙 𝑋 = 𝑋" and 𝑓 = 𝑓∗ are 
contained in the set of solutions obtained by solving 𝑓%&'(&")*+)",



Perfect Match: Application

• Match Function Known: Same data point rotated by different angle across 
domains shares the same causal (stable) feature, hence the same base object

• Perfect match is applicable when we have self augmentations



How to proceed when we do not know the perfect 
matches across domains?



MatchDG: Matching without known objects
Goal: Learn a match function s.t. Ω 𝑥, 𝑥$ = 1 when Dist(𝑥" , 𝑥"$) is low

Assumption: Let (𝑥7# , 𝑦), (𝑥4#
!
, 𝑦) be any two points that belong the same class and 

let (𝑥5# , 𝑦$) be any other point that has a different class label. Then the distance in 
causal features between (𝑥7 , 𝑥4) and is smaller than that between (𝑥7 , 𝑥5) or (𝑥4 , 𝑥5)



MatchDG: Matching without known objects
Goal: Learn a match function s.t. Ω 𝑥, 𝑥$ = 1 when Dist(𝑥" , 𝑥"$) is low

Assumption: Let (𝑥7# , 𝑦), (𝑥4#
!
, 𝑦) be any two points that belong the same class and 

let (𝑥5# , 𝑦$) be any other point that has a different class label. Then the distance in 
causal features between (𝑥7 , 𝑥4) and is smaller than that between (𝑥7 , 𝑥5) or (𝑥4 , 𝑥5)

Data Label Domain Object
𝑥" 1 1 𝒐𝟏

𝑥$ 1 2 𝑜$

𝑥% 1 2 𝒐𝟏

𝑥& 0 2 𝑜%

Assumption

𝐷𝑖𝑠𝑡 𝑥#), 𝑥#- < 𝐷𝑖𝑠𝑡 𝑥#), 𝑥#.
𝐷𝑖𝑠𝑡 𝑥#), 𝑥#- < 𝐷𝑖𝑠𝑡 𝑥#-, 𝑥#.
𝐷𝑖𝑠𝑡 𝑥#), 𝑥#/ < 𝐷𝑖𝑠𝑡 𝑥#), 𝑥#.
𝐷𝑖𝑠𝑡 𝑥#), 𝑥#/ < 𝐷𝑖𝑠𝑡 𝑥#/, 𝑥#.



MatchDG: Matching without known objects
Contrastive Loss: 

• Positive Matches: Specific data points from a different domain that share the 
same class label as the anchor

• Negative Matches: Any data point with a different class label from the anchor



MatchDG: Matching without known objects
Contrastive Loss: 

• Positive Matches: Specific data points from a different domain that share the 
same class label as the anchor

• Negative Matches: Any data point with a different class label from the anchor

Data Label Domain Object
𝑥" 1 1 𝒐𝟏

𝑥$ 1 2 𝑜$

𝑥% 1 2 𝒐𝟏

𝑥& 0 2 𝑜%

Contrastive Loss with 𝒙𝟏 as anchor

Positive Match(𝑥))= 𝑥-
Negative Match(𝑥))= 𝑥.

min
1
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MatchDG: Matching without known objects
Iterative Contrastive Learning:

• Positive matches inferred using Ω are updated during training based on the 
nearest same-class data points in the representation space 𝜙

• Iterative updates aim to account for the intra-class variance across domains 



MatchDG: Matching without known objects
Iterative Contrastive Learning:

• Positive matches inferred using Ω are updated during training based on the 
nearest same-class data points in the representation space 𝜙

• Iterative updates aim to account for the intra-class variance across domains 

Data Label Domain Object
𝑥" 1 1 𝒐𝟏

𝑥$ 1 2 𝑜$

𝑥% 1 2 𝒐𝟏

𝑥& 0 2 𝑜%

Updated positive match for 𝒙𝟏

min
2
𝐷𝑖𝑠𝑡 𝜙 𝑥) , 𝜙(𝑥2) ∀𝑥2 ∈ 𝑑-, 𝑦) = 𝑦2



MatchDG: Matching without known objects
Iterative Contrastive Learning:

• Positive matches inferred using Ω are updated during training based on the 
nearest same-class data points in the representation space 𝜙

• Iterative updates aim to account for the intra-class variance across domains 

Data Label Domain Object
𝑥" 1 1 𝒐𝟏

𝑥$ 1 2 𝑜$

𝑥% 1 2 𝒐𝟏

𝑥& 0 2 𝑜%

Contrastive Loss with updated match

Positive Match(𝑥))= 𝑥/
Negative Match(𝑥))= 𝑥.

min
1
𝐷𝑖𝑠𝑡 𝜙 𝑥) , 𝜙(𝑥/) − 𝐷𝑖𝑠𝑡 𝜙 𝑥) , 𝜙(𝑥.)



MatchDG: Matching without known objects
MatchDG Phase 1: Learn a match function Ω using iterative contrastive learning

MatchDG Phase 2: Substitute Ω learnt using Phase 1 in the perfect match loss

𝑓%&'(&")*+)", = argmin
,,.

∑# 𝐿#(ℎ 𝜙 𝑋 , 𝑌 + 𝜆 ∗ ∑/ 0,1 23𝐷𝑖𝑠𝑡 𝜙 𝑥4# , 𝜙 𝑥5#
!



Evaluation on benchmark datasets



MatchDG: OOD Accuracy
Dataset ERM Best 

Prior
Rand 
Match

MatchDG MatchDG
Hybrid

PerfMatch

Rot MNIST (5) 93.0 94.5 93.4 95.1 - 96.0

Rot MNIST (3) 76.2 77.7 78.3 83.6 89.7
Fashion MNIST (5) 77.9 78.7 77.0 80.9 - 81.6
Fashion MNIST (3) 36.1 37.8 38.4 43.8 - 54.0
PACS ResNet-18 81.7 85.2 81.9 83.2 84.4 -
PACS ResNet-50 85.7 87.8 85.5 86.1 87.5 -
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MatchDG: OOD Accuracy
Dataset ERM Best 

Prior
Rand 
Match

MatchDG MatchDG
Hybrid

PerfMatch

Rot MNIST (5) 93.0 94.5 93.4 95.1 - 96.0

Rot MNIST (3) 76.2 77.7 78.3 83.6 89.7
Fashion MNIST (5) 77.9 78.7 77.0 80.9 - 81.6
Fashion MNIST (3) 36.1 37.8 38.4 43.8 - 54.0
PACS ResNet-18 81.7 85.2 81.9 83.2 84.4 -
PACS ResNet-50 85.7 87.8 85.5 86.1 87.5 -

Gap between MatchDG and baselines 
increases with fewer training domains

Simple matching methods competitive to the 
state-of-the-art methods on PACS

MatchDG improves over DomainBed (ERM) 
with ResNet50 architecture



MatchDG: Stable Features

Dataset Method Overlap 
(%)

Top 10 
Overlap (%)

Mean 
Rank

ERM 15.8 48.8 27.4
Rotated 
MNIST

MatchDG
(Default)

28.9 64.2 18.6

MatchDG
(PerfMatch)

47.4 83.8 6.2

ERM 2.1 11.1 224.3
Fashion 
MNIST

MatchDG
(Default)

17.9 43.1 89.0

MatchDG
(PerfMatch)

56.2 87.2 7.3
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MatchDG: Stable Features

Dataset Method Overlap 
(%)

Top 10 
Overlap (%)

Mean 
Rank

ERM 15.8 48.8 27.4
Rotated 
MNIST

MatchDG
(Default)

28.9 64.2 18.6

MatchDG
(PerfMatch)

47.4 83.8 6.2

ERM 2.1 11.1 224.3
Fashion 
MNIST

MatchDG
(Default)

17.9 43.1 89.0

MatchDG
(PerfMatch)

56.2 87.2 7.3

Fraction of ground 
truth matches in the 
learnt match function 

MatchDG has about 
50% top-10 overlap 

on both datasets

Mean position of 
ground truth matches 

in the learnt match 
function 

MatchDG provides better 
match function than 

baseline ERM



MatchDG: Zero Training Error

• Zero training error does not imply similar representations within each class
• Methods with regularization based on comparing loss across domains such as 

IRM can be satisfied by ERM as the training error goes to zero



Chat more with us during the poster session!


