Domain Generalization using Causal Matching

Divyat Mahajan, Shruti Tople, Amit Sharma Microsoft Research

Spurious Correlations

Common training examples

Waterbirds

y: waterbird a: water background

a: female

y: landbird a: land background

y: dark hair

Test examples

y: waterbird a: land background

CelebA

a: male

y: blond hair a: male

MultiNLI

y: contradiction a: has negation (P) The economy could be still better. (H) The economy has never been better.

y: entailment a: no negation (P) Read for Slate's take on Jackson's findings. (H) Slate had an opinion on Jackson's findings.

y: entailment a: has negation (P) There was silence for a moment. (H) There was a short period of time where no one spoke.

Sagawa et al. (2019): Distributionally Robust Neural Networks

Domain Generalization

Peters et al. (2016): Causal Inference using Invariant Prediction

Goal: Learn a single classifier with training data sampled from M domains that generalizes well to data from unseen domains

Assumption: There exist stable (causal) features X_S which lead to an optimal classifier invariant to the changes in domains

Our Contributions

An object-invariant condition for domain generalization that highlights a key limitation of previous approaches

When object information is not available, a two-phase iterative algorithm to approximate object-based matches

Prior works based on domain invariant representation learning

Domain Invariant Representations

Learning representation independent of domain $(\phi(x) \perp d)$

Ganin et al. (2016): Domain Adversarial Training

Failure Case: Domain and Label Correlated

Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint

Akuzawa et al. (2019): Dependence between domain (d) and label (y) leads to tradeoff between accuracy (predicting y from $\phi(x)$) and invariance $(\phi(x) \perp d)$

Failure Case: Domain and Label Correlated

Akuzawa et al. (2019): Adversarial Invariant Learning with Accuracy Constraint

Akuzawa et al. (2019): Dependence between domain (d) and label (y) leads to tradeoff between accuracy (predicting y from $\phi(x)$) and invariance $(\phi(x) \perp d)$

Class-conditional domain invariant representations

Sun et al. (2016), Li et al. (2018): Learning representation independent of domain conditioned on class label $(\phi(x) \perp d \mid y)$

Is the class-conditional domain invariance objective correct?

Explanation: Distribution of stable features $p(x_c|y)$ changes across domains

Distribution of Stable Features Matter

Proposition: If $P(X_c|Y)$ remains the same across domains, then the class-conditional domain invariance yields a generalizable classifier such that the learnt representation $\phi(x)$ is independent of the domain given x_c

Distribution of Stable Features Matter

Proposition: If $P(X_c|Y)$ remains the same across domains, then the class-conditional domain invariance yields a generalizable classifier such that the learnt representation $\phi(x)$ is independent of the domain given x_c

Implication: $\phi(x)$ depends only on the stable features x_c if $P(X_c|Y)$ does not change across domains

New Invariance Criteria: $\phi(x) \perp d \mid x_c$

How to identify stable features?

Slab Dataset

Harshay et al. (2020): Simplicity Bias in Neural Networks

Slab Dataset

Slab Dataset

Conditioning on stable features

	-	
Source 1	Source 2	Target
100.0 (0.0)	96.0 (0.25)	57.6 (6.58)
99.9 (0.07)	94.8 (0.25)	53.0 (1.41)
99.9 (0.01)	95.9 (0.27)	62.9 (5.01)
99.9 (0.01)	96.0 (0.27)	63.1 (5.86)
100.0 (0.0)	96.1 (0.22)	59.5 (3.50)
99.9 (0.01)	96.0 (0.27)	55.9 (2.47)
99.9 (0.01)	96.0 (0.27)	58.9 (3.43)
99.9 (0.01)	96.0 (0.27)	64.7 (4.69)
99.9 (0.05)	97.8 (0.28)	77.8 (6.01)
	100.0 (0.0) 99.9 (0.07) 99.9 (0.01) 99.9 (0.01) 100.0 (0.0) 99.9 (0.01) 99.9 (0.01) 99.9 (0.01)	100.0 (0.0) 96.0 (0.25) 99.9 (0.07) 94.8 (0.25) 99.9 (0.01) 95.9 (0.27) 99.9 (0.01) 96.0 (0.27) 100.0 (0.0) 96.1 (0.22) 99.9 (0.01) 96.0 (0.27) 99.9 (0.01) 96.0 (0.27) 99.9 (0.01) 96.0 (0.27) 99.9 (0.01) 96.0 (0.27)

Conditioning on stable features

	Method	Source 1	Source 2	Target
Domain Invariant Representations	ERM DANN MMD CORAL	100.0 (0.0) 99.9 (0.07) 99.9 (0.01) 99.9 (0.01)	96.0 (0.25) 94.8 (0.25) 95.9 (0.27) 96.0 (0.27)	57.6 (6.58) 53.0 (1.41) 62.9 (5.01) 63.1 (5.86)
Class-Conditional Domain Invariant Representations	RandMatch CDANN C-MMD C-CORAL	100.0 (0.0) 99.9 (0.01) 99.9 (0.01) 99.9 (0.01)	96.1 (0.22) 96.0 (0.27) 96.0 (0.27) 96.0 (0.27)	59.5 (3.50) 55.9 (2.47) 58.9 (3.43) 64.7 (4.69)
(x) independent of omain given stable (slab) feature	PerfMatch	99.9 (0.05)	97.8 (0.28)	77.8 (6.01)

Conditioning on stable features

Fail to learn the stable (slab) feature

Better than prior approaches at learning the stable (slab) feature

Formalizing the intuition with causal graphs

Causal Graph for Data Generating Process

Causal Graph for Data Generating Process

Causal Graph for Data Generating Process

Correct Invariance Criteria

Correct Invariance Criteria

How to satisfy the invariance criteria?

Match Counterfactuals

Match Counterfactuals

the true causal features.

Perfect Match Approach

Aim: Learn representations $\phi(X)$ that satisfy the invariance criteria and are informative of the label Y across domains D

Perfect Match Approach

Aim: Learn representations $\phi(X)$ that satisfy the invariance criteria and are informative of the label Y across domains D

$$f_{perfect match} = \arg\min_{h,\phi} \sum_{d} L_d(h(\phi(X),Y) + \lambda * \sum_{\Omega(j,k)=1} Dist\left(\phi(x_j^d),\phi(x_k^{d'})\right)$$

Theorem: It can be shown the optimal solutions $\phi(X) = X_c$ and $f = f^*$ are contained in the set of solutions obtained by solving $f_{perfect match}$

Perfect Match: Application

Training Domains

Test Domains

Rotation Angles: 15, 30, 45, 60, 76

Rotation Angles: 0, 90

- Match Function Known: Same data point rotated by different angle across domains shares the same causal (stable) feature, hence the same base object
- Perfect match is applicable when we have self augmentations

How to proceed when we do not know the perfect matches across domains?

MatchDG: Matching without known objects

Goal: Learn a match function s.t. $\Omega(x, x') = 1$ when $\mathrm{Dist}(x_c, x_c')$ is low

Assumption: Let (x_i^d, y) , $(x_j^{d'}, y)$ be any two points that belong the same class and let (x_k^d, y') be any other point that has a different class label. Then the distance in causal features between (x_i, x_j) and is smaller than that between (x_i, x_k) or (x_j, x_k)

Goal: Learn a match function s.t. $\Omega(x, x') = 1$ when $\mathrm{Dist}(x_c, x_c')$ is low

Assumption: Let (x_i^d, y) , $(x_j^{d'}, y)$ be any two points that belong the same class and let (x_k^d, y') be any other point that has a different class label. Then the distance in causal features between (x_i, x_j) and is smaller than that between (x_i, x_k) or (x_j, x_k)

Data	Label	Domain	Object
x^1	1	1	o^1
x^2	1	2	o^2
x^3	1	2	o^1
x^4	0	2	o^3

Assumption

$$Dist(x_c^1, x_c^2) < Dist(x_c^1, x_c^4)$$

 $Dist(x_c^1, x_c^2) < Dist(x_c^2, x_c^4)$
 $Dist(x_c^1, x_c^3) < Dist(x_c^1, x_c^4)$
 $Dist(x_c^1, x_c^3) < Dist(x_c^3, x_c^4)$

Contrastive Loss:

- Positive Matches: Specific data points from a different domain that share the same class label as the anchor
- Negative Matches: Any data point with a different class label from the anchor

Contrastive Loss:

- Positive Matches: Specific data points from a different domain that share the same class label as the anchor
- Negative Matches: Any data point with a different class label from the anchor

Data	Label	Domain	Object
x^1	1	1	o^1
x^2	1	2	o^2
x^3	1	2	o^1
x^4	0	2	o^3

Contrastive Loss with x^1 as anchor

Positive
$$Match(x^1) = x^2$$

Negative $Match(x^1) = x^4$

$$\min_{\phi} Dist(\phi(x^1), \phi(x^2)) - Dist(\phi(x^1), \phi(x^4))$$

Iterative Contrastive Learning:

- Positive matches inferred using Ω are updated during training based on the nearest same-class data points in the representation space ϕ
- Iterative updates aim to account for the intra-class variance across domains

Iterative Contrastive Learning:

- Positive matches inferred using Ω are updated during training based on the nearest same-class data points in the representation space ϕ
- Iterative updates aim to account for the intra-class variance across domains

Data	Label	Domain	Object
x^1	1	1	<i>o</i> ¹
x^2	1	2	o^2
x^3	1	2	o^1
x^4	0	2	o^3

Updated positive match for x^1

$$\min_{i} Dist(\phi(x^{1}), \phi(x^{i})) \ \forall x^{i} \in d^{2}, y^{1} = y^{i}$$

Iterative Contrastive Learning:

- Positive matches inferred using Ω are updated during training based on the nearest same-class data points in the representation space ϕ
- Iterative updates aim to account for the intra-class variance across domains

Data	Label	Domain	Object
x^1	1	1	o^1
x^2	1	2	o^2
x^3	1	2	o^1
x^4	0	2	o^3

Contrastive Loss with updated match

Positive Match(
$$x^1$$
)= x^3
Negative Match(x^1)= x^4

$$\min_{\phi} Dist(\phi(x^1), \phi(x^3)) - Dist(\phi(x^1), \phi(x^4))$$

MatchDG Phase 1: Learn a match function Ω using iterative contrastive learning

MatchDG Phase 2: Substitute Ω learnt using Phase 1 in the perfect match loss

$$f_{perfect match} = \arg\min_{h,\phi} \sum_{d} L_d(h(\phi(X),Y) + \lambda * \sum_{\Omega(j,k)=1} Dist\left(\phi(x_j^d),\phi(x_k^{d'})\right)$$

Evaluation on benchmark datasets

MatchDG: OOD Accuracy

Dataset	ERM	Best Prior	Rand Match	MatchDG	MatchDG Hybrid	PerfMatch
Rot MNIST (5)	93.0	94.5	93.4	95.1	-	96.0
Rot MNIST (3)	76.2	77.7	78.3	83.6		89.7
Fashion MNIST (5)	77.9	78.7	77.0	80.9	-	81.6
Fashion MNIST (3)	36.1	37.8	38.4	43.8	-	54.0
PACS ResNet-18	81.7	85.2	81.9	83.2	84.4	-
PACS ResNet-50	85.7	87.8	85.5	86.1	87.5	-

MatchDG: OOD Accuracy

Dataset	ERM	Best Prior	Rand Match	MatchDG	MatchDG Hybrid	PerfMatch
Rot MNIST (5)	93.0	94.5	93.4	95.1	-	96.0
Rot MNIST (3)	76.2	77.7	78.3	83.6		89.7
Fashion MNIST (5)	77.9	78.7	77.0	80.9	-	81.6
Fashion MNIST (3)	36.1	37.8	38.4	43.8	-	54.0
PACS ResNet-18	81.7	85.2	81.9	83.2	84.4	-
PACS ResNet-50	85.7	87.8	85.5	86.1	87.5	-

Gap between MatchDG and baselines increases with fewer training domains

MatchDG: OOD Accuracy

	Dataset	ERM	Best Prior	Rand Match	MatchDG	MatchDG Hybrid	PerfMatch
	Rot MNIST (5)	93.0	94.5	93.4	95.1	-	96.0
	Rot MNIST (3)	76.2	77.7	78.3	83.6		89.7
	Fashion MNIST (5)	77.9	78.7	77.0	80.9	-	81.6
\	Fashion MNIST (3)	36.1	37.8	38.4	43.8	-	54.0
	PACS ResNet-18	81.7	85.2	81.9	83.2	84.4	-
	PACS ResNet-50	85.7	87.8	85.5	86.1	87.5	-

Gap between MatchDG and baselines increases with fewer training domains

Simple matching methods competitive to the state-of-the-art methods on PACS

MatchDG improves over DomainBed (ERM) with ResNet50 architecture

MatchDG: Stable Features

Dataset	Method	Overlap (%)	Top 10 Overlap (%)	Mean Rank
	ERM	15.8	48.8	27.4
Rotated MNIST	MatchDG (Default)	28.9	64.2	18.6
	MatchDG (PerfMatch)	47.4	83.8	6.2
	ERM	2.1	11.1	224.3
Fashion MNIST	MatchDG (Default)	17.9	43.1	89.0
	MatchDG (PerfMatch)	56.2	87.2	7.3

MatchDG: Stable Features

Fraction of ground truth matches in the learnt match function

Method Overlap **Top 10 Dataset** Mean Overlap (%) (%) Rank **ERM** 15.8 48.8 27.4 Rotated MatchDG 28.9 64.2 18.6 **MNIST** (Default) 83.8 6.2 MatchDG 47.4 (PerfMatch) 224.3 **ERM** 2.1 11.1 Fashion MatchDG 17.9 43.1 89.0 MNIST (Default) MatchDG 56.2 87.2 7.3 (PerfMatch)

Mean position of ground truth matches in the learnt match function

MatchDG: Stable Features

Fraction of ground truth matches in the learnt match function

MatchDG has about 50% top-10 overlap on both datasets

	Dataset	Method	Overlap (%)	Top 10 Overlap (%)	Mean Rank
		ERM	15.8	48.8	27.4
/	Rotated MNIST	MatchDG (Default)	28.9	64.2	18.6
		MatchDG (PerfMatch)	47.4	83.8	6.2
		ERM	2.1	11.1	224.3
\	Fashion MNIST	MatchDG (Default)	17.9	43.1	89.0
		MatchDG (PerfMatch)	56.2	87.2	7.3

Mean position of ground truth matches in the learnt match function

MatchDG provides better match function than baseline ERM

MatchDG: Zero Training Error

- Zero training error does not imply similar representations within each class
- Methods with regularization based on comparing loss across domains such as IRM can be satisfied by ERM as the training error goes to zero

