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Differential Privacy [Dwork et al.]
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(ε, δ)-Differential Privacy 
[Dwork et al.’06]
For all S, and two neighboring X, X’
Pr[A(X) ∈ S] ≤ eε・Pr[A(X’) ∈ S] + δ
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Differential Privacy: Central Model [Dwork et al.]

x1 User 1

x2 User 2

xn User n

...

y1

y2

yn

Analyzer
Estimate of 
x1 + x2 + … + 
xn

The output of the 
analyzer must be 
differentially private 

[0,1]

∈

ε-Central DP Algorithms: 
Error Ө(1/ε) by Laplace 
Mechanism  
[Dwork et al.’06, Ghosh et al.’12]

(ε, δ)-Differential Privacy 
[Dwork et al.’06]
For all S, and two neighboring X, X’
Pr[A(X) ∈ S] ≤ eε・Pr[A(X’) ∈ S] + δ

ε-DP ☰ (ε,0)-DP 
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Differential Privacy: Local Model [Kasiviswanathan et al.]
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ε-Local DP Algorithms: 
Error Өε(√n) by randomized 
response [Warner’65, 
Beimel et al.’08, Chan et al.’12]

(ε, δ)-Differential Privacy 
[Dwork et al.’06]
For all S, and two neighboring X, X’
Pr[A(X) ∈ S] ≤ eε・Pr[A(X’) ∈ S] + δ
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Multiset of messages have 
to be differentially private

☰

● Anonymous Model [Ishai et al.]
● Encode-Shuffle-Analyze 

Architecture [Bittau et al.]
● Shuffled/Shuffle Model 

[Cheu et al., Erlingsson et al.]
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Differential Privacy: Shuffled Model [Bittau et al., Erlingsson et al.]

Amplification by Shuffling (Informal) 
[Erlingsson et al., Balle et al.]
Any εL-local DP algorithm is (ε, δ)-shuffled DP 
for ε ≪ εL and for reasonable value of δ.
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Bits per 
message

Laplace Mechanism
[Dwork et al.’06, Ghosh et al.’12]

Randomized Response
[Warner’65, Beimel et al.’08]

[Balle et al.’ 19]

Real Summation Error
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Shuffled Model: Multi-Message Setting
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M = d1 + … +dn
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Bits per 
message

Laplace Mechanism
[Dwork et al.’06, Ghosh et al.’12]

Randomized Response
[Warner’65, Beimel et al.’08]

This work

[Ghazi et al.’20]

[Balle et al.’ 19]

[Cheu et al.’19]

Real Summation Error
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Θ(1/ε) 1

Θε(√n) 1
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ε-Shuffled DP

O(1/ε)    1 + 
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[Balle et al.’20, Ghazi et al.’ 20] O(1/ε) O(log n)

O(log n)

   1 + 
log(1/δ)(O

Longer talk available here

https://www.youtube.com/watch?v=6n4Wjmyc5wk&t=1s

