ICML Tutorial: Online & Non-stochastic control

Microsoft Research

Elad Hazan

Karan Singh

Tutorial materials

References (email us for more!)

+ slides, lecture notes, colab notebooks:

https://sites.google.com/view/nsc-tutorial/home

Deluca: more experiments, notebooks

Control vs. RL

ME/AE/EE COS

Control of dynamical systems

- Autonomous drones
- Robotics
- Data center cooling
- Medical ventilation

Differentiable Reinforcement Learning

Reinforcement learning

- Atari games
- Go
- Protein folding

Examples

Input air+O2 flow

Observe lung/airway pressure

What is this tutorial about?

Reinforcement Learning / optimal control: stochastic env., max long-term/discounted reward

Recht, ICML 2018 tutorial: "Control ≈ RL"

rol ≠ RL"

Today: "Control ≠ RL"

environment w. structure

Robust, Scalable, Gradient-based methods?

Sensation

AGENT

lReward

ENVIRONMEN'

→ using online convex optimization & convex relaxations → finite-time regret guarantees
 → extends to time-varying systems/planning/partial observation/bandit
 information/safety constraints/controller verification...

Action

A mini-tutorial: Online Convex Optimization (+ convex relaxation)

Non-stochastic control based on OCO + convex relaxations

Online Convex Optimization

$$\operatorname{Regret} = \sum_t f_t(x_t) - \min_{x^* \in K} \sum_t f_t(x^*) = \mathrm{o}(\mathtt{T}) \text{ , or } \frac{\mathtt{Re}g}{\mathtt{T}} \mapsto_{\mathtt{T} \mapsto \infty} 0$$

Examples

1. Online Linear Regression:

- $K = \{x \mid ||x|| \le \omega\}$
- Loss function $f_t(x) = (a_t^T x b_t)^2$

2. Online shortest paths:

- K = flow polytope
- Loss function $f_t(x) = \sum_e \ell_e^t x_e$

3. Online Matrix Completion:

- $K = \{X \in \mathbb{R}^{n \times n} , \|X\|_* \le k\}$ matrices with bounded nuclear norm
- At time t, if $a_t = (i_t, j_t)$, then loss function $f_t(x) = (x(i_t, j_t) b_t)^2$

Online Portfolio selection, online ranking, online ad placement / revenue maximization,....

Later today: decision set = policy class!

Why is OCO important?

- vs. statistical learning: more general, deterministic guarantees
- Derivation of (offline) optimization algorithms (sublinear convex optimization, adaptive regularization / AdaGrad, saddle-point optimization....)
- Learning multi-party-games, convergence to equilibria
- Allows efficient algorithms for large, structured hypothesis classes paths in graphs = flow polytope low-trace matrices for matrix completion
- Bandit convex optimization,...
- By now, host of techniques/methods developed!

Online gradient descent

$$y_{t+1} = x_t - \eta \nabla f_t(x_t)$$

$$x_{t+1} = \arg\min_{x \in K} |y_{t+1} - x|$$

Theorem: Regret $\leq 2GD\sqrt{T}$, G = Lipschitz const, D=diameter

Analysis

Observation 1:

$$|y_{t+1} - x^*|^2 = |x_t - x^*|^2 - 2\eta \nabla_t^T (x_t - x^*) + \eta^2 |\nabla_t|^2$$

Observation 2: (Pythagoras). $|x_{t+1} - x^*|^2 \le |y_{t+1} - x^*|^2$

Thus:

$$|x_{t+1} - x^*|^2 \le |x_t - x^*|^2 - 2\eta \nabla_t^T (x_t - x^*) + \eta^2 |\nabla_t|^2$$

Convexity:

$$\sum_{t} [f_{t}(x_{t}) - f_{t}(x^{*})] \leq \sum_{t} \nabla_{t}^{T}(x_{t} - x^{*})$$

$$\leq \frac{1}{\eta} \sum_{t} (|x_{t} - x^{*}|^{2} - |x_{t+1} - x^{*}|^{2}) + \eta \sum_{t} |\nabla_{t}|^{2}$$

$$\leq \frac{1}{\eta} |x_{1} - x^{*}|^{2} + \eta TG^{2} \leq 2DG\sqrt{T}$$

$$y_{t+1} = x_t - \eta \nabla f_t(x_t)$$

$$x_{t+1} = \arg\min_{x \in K} |y_{t+1} - x|$$

OGD++ methods for OCO

- Fast rates with 1/t learning rate
- Online Newton Step
- Follow the perturbed leader
- Online Frank Wolfe
- Online Mirror Descent , RFTL
- Deterministic regret → SGD
- Many many extensions...

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions:
 - partial observation, unknown systems, bandit feedback, black-box control, time-varying systems and non-linearity
- 3. Advanced settings: adversarial noise design and controller verification, planning

Part 1: the basics of non-stochastic control

Control: basic formalization

$$\min_{\mathbf{u}(\mathbf{x})} \sum_{t=1}^{T} c_t(x_t, u_t)$$
s.t. $x_{t+1} = f(x_t, u_t) + w_t$

 x_t = state.

 $u_t = \underline{\text{control}}$ input.

 w_t = perturbation.

Control: basic formalization

$$\min_{\mathbf{u}(\mathbf{x})} \sum_{t=1}^{T} c_t(x_t, u_t)$$

s.t. $x_{t+1} = A_t x_t + B_t u_t + w_t$

 x_t = state.

 $u_t = \underline{\text{control}}$ input.

 w_t = perturbation.

Optimal control: in principle, yes!

For stochastic perturbation,

$$\min_{\mathbf{u}(\mathbf{x})} \sum_{t=1}^{T} c_t(x_t, u_t)$$

s.t. $x_{t+1} = A_t x_t + B_t u_t + w_t$

Mathematical (stochastic) optimization problem

Example: LQR

$$\min_{\mathbf{u}(\mathbf{x})} \sum_{t=1}^{T} c_t(x_t, u_t)$$

s.t. $x_{t+1} = A_t x_t + B_t u_t + w_t$

 LQR – Gaussian noise & quadratic costs only Solution (K_t depends on A_t,B_t)

$$u_t = K_t x_t$$

→ (algebraic Ricatti equation)

The Bellman optimality equation for the system:

$$v_{t-1}(x) = \min_{u} \{ x^{T} Q x + u^{T} R u + v_{t} (A_{t} x + B_{t} u) \}$$

Backward induction: assume it's a quadratic, then opt control is linear in x... Essentially known from the 60's, see Rechts's ICML 2018 tutorial for more information!

Example: LQR

$$\min_{\mathbf{u}(\mathbf{x})} \sum_{t=1}^{T} c_t(x_t, u_t)$$
s.t. $x_{t+1} = A_t x_t + B_t u_t + w_t$

 LQR – Gaussian noise & quadratic costs only Solution (K_t depends on A_t,B_t)

$$u_t = K_t x_t$$

• H_{∞} -control:

$$\min_{K_{1:T}} \max_{|w_{1:T}|_2 \le C} \sum_{t} c_t(u_t, x_t)$$

Pessimistic, computationally ill-behaved for non-quadratics (even convex costs!), non-adaptive

A notion of optimality for arbitrary noise?

- 1. Regret analysis (adaptive performance metric)
- 2. Efficient methods for general losses
 Tyrrell Rockafellar '87: model constraints: complicated optimal policy!

Motivating example

- Fly a drone from source to destination w. unknown weather / wind / rain / other uncertainties (non-stochastic!)
 (or: track a clinician prescribed waveform changing costs)
- Optimal/Robust control theory: all possible wind conditions
 - $\rightarrow H_{\infty}$ overly pessimistic
 - $\rightarrow H_2$ overly optimistic
- Goal: adaptive control w. best of both worlds:
 - efficient + fast when weather permits, careful when needed
 - Optimal to instance perturbations
 - Finite time **provable** guarantees

The non-stochastic control problem

Adversarial noise in the dynamics!

Known/unknown system, full/partial observation

$$x_{t+1} = A_t x_t + B_t u_t + w_t$$

$$y_t = C_t x_t + D_t u_t + \zeta_t$$

$$c_t(y_t, u_t)$$

The non-stochastic control problem

Initially: known system, full observation

$$x_{t+1} = A_t x_t + B_t u_t + w_t$$
$$c_t(x_t, u_t)$$

Adversarial noise in the dynamics!

Online control of dynamical systems

- Online sequence prediction, t = 1, ..., T:
 - Observe x_t , select input $u_t \in \mathbb{R}^n$
 - Incur loss. $c_t(u_t, x_t)$

• Goal: **POLICY REGRET** (compete with "what would have happened")

$$\max_{w_{1:T}} \left(\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{\pi \in \Pi} \sum_{t=1}^{T} c_t(\hat{x}_t, \pi(\hat{x}_t)) \right)$$

- \hat{x}_t = counterfactual state sequence under $\hat{u}_t = \pi(\hat{x}_t)$, $\hat{x}_{t+1} = A_t\hat{x}_t + B_t\hat{u}_t + w_t$
- Bounded noise $|w_t| \le 1$

What's a reasonable comparator class? (and why do we even need one?)

Linear Policies:

$$\Pi_{K} = \{ \pi_{K} \mid u_{t} = Kx_{t} \}$$

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

$$\Pi_{LDC} = \{ \pi_{A,B,C,B} \mid u_t = Cs_t + Dy_t, s_{t+1} = As_t + By_t \}$$

Disturbance-action controllers:

$$\Pi_{\text{DAC}} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t x_t + \sum_{i}^{H} M_i w_{t-i} \right\}$$

Disturbance-response controllers:

$$\Pi_{DRC} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t y_t + \sum_{i}^{H} M_i y_{t-i}^{nat} \right\}$$

Hierarchy for LTI systems only!

1st basic result

Efficient algorithm s.t.

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{\pi \in \Pi_{DAC}} \left(\sum_{t=1}^{T} c_t(\widehat{x_t}, \pi(\widehat{x_t})) \right) \leq O(\sqrt{T})$$

• Efficient → Polynomial in system parameters, logarithmic in T

Up next: analysis main ideas+algorithm

Ingredient 1: Convex Relaxation of Π_K

to simplify derivation, assume LTI

• With $w_{1:T}$ known, optimal K is non-convex problem:

$$u_{t+1}(K) = Kx_{t+1} = K \cdot \left(\sum_{i=0}^{t} (A + BK)^{i} w_{t-i}\right)$$

• Relaxation ($\overrightarrow{M} = \{M_1 ... M_t\}$):

$$\min_{M} \left(\sum_{t=1}^{T} c \left(x_{t}(\overrightarrow{M}), u_{t}(\overrightarrow{M}) \right) \right)$$
is convex!

$$u_{t+1}(\overrightarrow{M}) = \overrightarrow{M_t} \cdot \overrightarrow{w_t} = \left(\sum_{i=0}^t M_i w_{t-i}\right)$$

Ingredient 2: Enforcing stability & learnability

- K_t = stabilizing linear policy (for A_t, B_t)
- Optimal controls:

$$u_t = K_t x_t + \sum_{i=1}^H M_i^t w_{t-i}$$

- Representation Power: With $H \approx \frac{1}{\epsilon}$, can ϵ -emulate any stable policy.
- Stability: K stablizing \Rightarrow any (non-stationary) error feedback policy is stable.
- How do we find stabilizing K? ["black-box control"... TBD!]

Ingredient 3: OCO with memory

Adversarial sequence with time dependency:

$$f_t(M_{1:H}^t | \dots) = f_t(M_{1:H}^t, M_{1:H}^{t-1}, \dots, M_{1:H}^{t-q})$$

Regret vs. best fixed decision

$$\sum_{t=1}^{T} f_t(M_{1:H}^t, \dots, M_{1:H}^{t-q}) - \min_{M_{1:H}} \sum_{t} f_t(M_{1:H}, \dots, M_{1:H}) = O(qH\sqrt{T})$$

slow-moving iterative methods, exploiting Lipschitzness

Fundamentally new method: Gradient Perturbation Controller (GPC)

Initialize
$$\overrightarrow{M}=M_1,\ldots,M_H$$
 For $t=1,\ldots,T$ do
1. Use control $u_t=K_tx_t+\sum_{i\leq H}M_i\,w_{t-i}$

- 2. Observe state x_{t+1} , compute noise $w_t = x_{t+1} A_t x_t B_t u_t$.
- 3. Construct cost function:

$$\ell_t(\vec{M}) = c_t(x_t(M_{1:H}), u_t(M_{1:H}))$$

4. Update \overline{M}

$$\vec{M} \leftarrow \vec{M} - \eta \ \nabla_{\vec{M}} \ \ell_t(\vec{M})$$

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions: partial observation, unknown systems, bandit feedback, black-box control, time-varying systems and non-linearity
- 3. Advanced settings: adversarial noise design and controller verification, planning

Summary – 1st part

- 1. The power of control: differentiation through the environment
- 2. Motivation for more robust (adversarial noise), scalable (iterative gradient method, environment differentiation) new methods
- 3. The power of online convex optimization and convex relaxation: mini-tutorial on OCO
- 4. Deriving the Gradient Perturbation Controller (GPC)
- 5. Resources:

Tutorial website

More info on OCO

COLAB NOTEBOOKS FOR ALL EXPERIMENTS

Thank you! Part 2 coming up!

Questions for this tutorial

- 1. What's the need for innovation in differentiable reinforcement learning? What applications are you thinking of and how can they benefit from new methods?
- 2. How is online non-stochastic control what you're doing different from RL/classical control? Why is this important?
- 3. What's the essence of the new methods? What techniques are they using?
- 4. Where do you see this field going? What potential extensions are there? What are the hardest unsolved problems?

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions:
 - partial observation, unknown systems, bandit feedback, black-box control, time-varying systems and non-linearity
- 3. Advanced settings: adversarial noise design and controller verification, planning

What if we don't know the system?

A,B = system

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$c_t(x_t, u_t)$$

Non-stochastic control w/o system

- Identify the system with adversarial (small!) noise!
- Key idea: activate w. random noise (or additive component): $x_{t+1} = Ax_t + Bu_t + w_t$, $u_t \sim N(0, \Sigma)$
- Now: $E[x_{t+k}u_t] = E[\sum_{i=0:k} A^i (Bu_{t+k-i} + w_t)u_t] = A^k B$
- From here on: Kalman matrix reconstruction, sys-id, GPC...

NSC w. partial observation

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$y_t = Cx_t + Du_t + \zeta_t$$
$$c_t(y_t, u_t)$$

State and system are unknown!

"Nature's y's " (Youla reparametrization)

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$y_t = Cx_t + Du_t + \zeta_t$$
$$c_t(y_t, u_t)$$

What's a reasonable comparator class?

Linear Policies:

$$\Pi_{K} = \{ \pi_{K} \mid u_{t} = Kx_{t} \}$$

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

$$\Pi_{LDC} = \{ \pi_{A,B,C,B} \mid u_t = Cs_t + Dy_t, s_{t+1} = As_t + By_t \}$$

Disturbance-action controllers:

$$\Pi_{\text{DAC}} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t x_t + \sum_{i}^{H} M_i w_{t-i} \right\}$$

• Disturbance-response controllers:

$$\Pi_{DRC} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t y_t + \sum_{i}^{H} M_i y_{t-i}^{nat} \right\}$$

Gradient Response Controller (LTI, full obs.)

Initialize
$$\overrightarrow{M} = M_1, \dots, M_H$$

For $t = 1, \dots, T$ do

- 1. Use control $u_t = Kx_t + \sum_{i \le H} M_i x_{t-i}^{nat}$
- 2. Observe state x_{t+1} , compute noise and nature's x: $w_t = x_{t+1} Ax_t Bu_t$, $x_{t+1}^{nat} = Ax_t^{nat} + w_t$.
- 3. Construct cost function:

$$\ell_t(\vec{M}) = c_t(x_t(M_{1:H}), u_t(M_{1:H}))$$

4. Update \vec{M}

$$\vec{M} \leftarrow \vec{M} - \eta \ \nabla_{\vec{M}} \ \ell_t(\vec{M})$$

NSC w. Partial observation

Non-stochastic control, unknown system & partially observed state:

- 1. Compete w. Π_{DFC}
- 2. $O(T^{2/3})$ regret
- 3. $O(T^{1/2})$ regret for quadratics: "improper LQG" (first efficient algorithm even for stochastic setting)

Via: Youla reparametrization, "Nature's y's", online gradient methods

ICML Tutorial: Online & Non-stochastic control

Microsoft Research

Elad Hazan

Karan Singh

https://sites.google.com/view/nsc-tutorial/home

Recap from Part I

Adversarial noise in the dynamics!

Part I:
Time-invariant
known system,
full observation

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$c_t(x_t, u_t)$$

Efficient gradient-based algorithm s.t.

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{\pi \in \Pi_{DAC}} \left(\sum_{t=1}^{T} c_t(\widehat{x_t}, \pi(\widehat{x_t})) \right) \leq O(\sqrt{T})$$

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions: unknown systems, partial observability, bandit feedback, black-box control, time-varying systems
- 3. Applications: adversarial noise design and controller verification, planning

What if we don't know the system?

A,B = system

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$c_t(x_t, u_t)$$

Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.

Non-stochastic perturbations \Rightarrow inconsistent estimates.

Here: inject random noise (or as an additive component):

Any coarse stabilizing matrix K.

$$x_{t+1} = Ax_t + Bu_t + w_t$$
, $u_t \sim N(0, I)$ or $Kx_t + N(0, I)$

- Now: $E[x_{t+k}u_t] = E[\sum_{i=0:k} A^i (Bu_{t+k-i} + w_t + x_t)u_t] = A^k B$
- Then: sys-id (i.e. recover A, B), do GPC with estimated system $\rightarrow T^{\frac{2}{3}}$ regret.

Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.

Non-stochastic perturbations \Rightarrow inconsistent estimates.

Here: inject random noise (or as an additive component):

$$x_{t+1} = Ax_t + Bu_t + w_t$$
, $u_t \sim N(0, I)$ or $Kx_t + N(0, I)$

- Now: $E[x_{t+k}u_t] = E[\sum_{i=0:k} A^i (Bu_{t+k-i} + w_t + x_t)u_t] = A^k B$
- Then: sys-id (i.e. recover A, B), do GPC with estimated system $\rightarrow T^{\frac{1}{3}}$ regret.

Without any prior knowledge

How to construct a stabilizing control?

Can construct a stabilizing controller at $O(2^d)$ cost.

Leading to
$$O(2^d + T^{\frac{2}{3}})$$
 regret.

Theorem: Even for noiseless linear systems, ANY control algorithm has worst case regret:

$$\sum_{t \in T} c_t(x_t, u_t) - \min_{\pi \in \Pi_{LC}} \left(\sum_{t \in T} c_t(\widehat{x_t}, \pi(\widehat{x_t})) \right) \ge \Omega(2^d)$$

Blackbox Control of Linear Dynamical Sys Chen, Hazan COLT '21

NSC under partial observability

What's a reasonable comparator class?

• Linear Policies:

$$\Pi_{K} = \{ \pi_{K} \mid u_{t} = K x_{t} \}$$

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

$$\Pi_{LDC} = \{ \pi_{A,B,C,B} \mid u_t = Cs_t + Dy_t, s_{t+1} = As_t + By_t \}$$

Disturbance-action controllers:

$$\Pi_{\text{DAC}} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t x_t + \sum_{i}^{H} M_i w_{t-i} \right\}$$

Disturbance-response controllers:

$$\Pi_{DRC} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t y_t + \sum_{i}^{H} M_i y_{t-i}^{nat} \right\}$$

GPC plays / competes against DACs.

Can't calculate w_t even when A, B, C are known.

"Nature's y's" (rel. Youla reparametrization)

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$y_t = Cx_t$$
$$c_t(y_t, u_t)$$

Improper learning for non-stochastic control Simchowitz, Singh, Hazan, COLT '20

What's a reasonable comparator class?

$$\Pi_{K} = \{ \pi_{K} \mid u_{t} = K x_{t} \}$$

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

$$\Pi_{LDC} = \{ \pi_{A,B,C,B} \mid u_t = Cs_t + Dy_t, s_{t+1} = As_t + By_t \}$$

Disturbance-action controllers:

$$\Pi_{\text{DAC}} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t x_t + \sum_{i}^{H} M_i w_{t-i} \right\}$$

Disturbance-response controllers:

$$\Pi_{\text{DRC}} = \left\{ \pi_{M_{1:H}} \mid u_t = K_t y_t + \sum_{i}^{H} M_i y_{t-i}^{nat} \right\}$$

Can be computed purely from y_t and A, B, C.

Source: Hark, A Vagrant

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$y_t = Cx_t$$

Gradient Response Controller (partial obs.)

Initialize
$$\overrightarrow{M} = M_1, \dots, M_H$$

For $t = 1, \dots, T$ do

- 1. Use control $u_t = \sum_{i \leq H} M_i y_{t-i}^{nat}$
- 2. Observe y_{t+1} , compute nature's y: $y_{t+1}^{nat} = y_{t+1} CABu_t CA^2Bu_{t-1} + \cdots$
- 3. Construct cost function:

$$\ell_t(\vec{M}) = c_t(y_t(M_{1:H}), u_t(M_{1:H}))$$

4. Update \vec{M}

$$\vec{M} \leftarrow \vec{M} - \eta \nabla_{\vec{M}} \ell_t(\vec{M})$$

NSC under partial observability

Non-stochastic control for partially observed state:

- 1. Compete w. Π_{DFC}
- 2. $O(T^{1/2})$ regret for known systems.
- 3. $O(T^{2/3})$ regret for unknown systems.
- 4. $O(T^{1/2})$ regret for *smoothed* noise, quadratic loss: "improper LQG" (first efficient algorithm even for stochastic setting)

Via: Youla reparametrization, "Nature's y's", online gradient methods

Changing LDS

$$\min_{\mathbf{u}(\mathbf{x})} \mathbb{E}\left[\sum_{t=1}^{T} c_t(x_t, u_t)\right]$$
s.t. $x_{t+1} = A_t x_t + B_t u_t + w_t$

What's a reasonable metric?

Let's go back to online convex optimization...

Learning in changing environments: online shortest paths

destination

Learning in changing environment

Summer congestion

destination

Learning in changing environment

Winter congestion

destination

Regret minimization (OGD, FTRL, ONS,...)

summer – optimal path. winter – very slow shift from p_1 to p_2

regret does not capture movement!

Convergence is good for regret, but...

Adaptive Regret

$$\sum_{t \in J} f_t(x_t) - \min_{x_J^*} \sum_{t \in J} f_t(x_J^*)$$

Adaptive Regret

Adaptive Regret =
$$\sup_J [\sum_{t \in J} f_t(x_t) - \min_{x_J^*} \sum_{t \in J} f_t(x_J^*)]$$

- Max regret over all intervals
 - Different optimum x*, for every interval J
 - Captures movement of optimum as time progresses
- We want Adaptive Regret = o(T)
 - In any interval of size $\omega(AR)$, algorithm converges to optimum (on smaller interval we cannot guarantee anything)
 - More general than "dynamic regret" and other notions

Adaptive Regret for Control

$$\sup_{I} \left\{ \sum_{t \in I} c_t(x_t, u_t) - \min_{\pi \in \Pi_{DFC}} \left(\sum_{t \in I} c_t(\widehat{x_t}, \pi(\widehat{x_t})) \right) \right\} \leq \sqrt{L} \leq \sqrt{T}$$

- Maintain a working set of log(T) GPC algorithms
- Merge their control according to an exponential weighting scheme
- Adaptation of FLH (follow-the-leading-history) method for OCO
- log(T) overhead in running time & memory

Adaptive Regret for Control of Time-Varying Dyn Gradu, Hazan, Minasyan '20

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions: unknown systems, partial observability, bandit feedback, black-box control, time-varying systems
- 3. Applications: adversarial noise design and controller verification, planning

How it fits in: Nonstochastic Control

Control-based strategies are often modular.

Convex Policy Parametrization for Linear Control

$$x_{h+1} = Ax_h + Bu_h + w_h$$

$$u_h = Kx_h$$
 vs. $u_h = \sum_{i=1}^{\tau} M_i w_{h-i}$

Controller verification

How can we certify a controllers' correct behavior?

→ Generate maximally adversarial online perturbation

Generating Adversarial Disturbances for Controller Verification Ghai, Snyder, Majumdar, Hazan L4DC '21

Noise <-> control

Generating Adversarial Disturbances for Controller Verification Ghai, Snyder, Majumdar, Hazan L4DC '21

Experiments with airsim

Generating Adversarial Disturbances for Controller Verification Ghai, Snyder, Majumdar, Hazan L4DC '21

Data-driven Planning

Learn an (adaptive) policy

- + given an approximate model
- + subject to changing, unknown perturbations
- + in a handful of episodes

Why?

- +Arises in real-world applications
- + Sandboxed setup for sim2real, meta-learning, policy transfer

Problem Setting

Episode 1 of T

State

Action

Learner has a model f(x,u)

Timestep 1 of H

Play action u_h

$$x_{h+1} = f(x_h, u_h) + w_h$$

Suffer $c(x_h, u_h)$

Episodic $Cost_t = \sum_h c_h(x_h, u_h)$

Compare:

Iterative LQR > no perturbations
Iterative LQG > Gaussian perturbations
Model Predictive Control > One-shot
Iterative Learning Control > Same setup
(here)

Unknown, Nonstationary
Perturbations

(arbitrary, no dist. assumption) (changes every step, every episode)

Objective: Planning Regret

Planning Regret Bound

For time-varying linear dynamical system

Subject to arbitrary perturbation

An efficient gradient-based algorithm

$$\frac{1}{TH} \left(\sum_{t=1}^{T} Cost_{t}(Alg) - \min_{U_{1:H}^{*}} \sum_{t=1}^{T} \min_{\pi_{t}^{*}} Cost_{t}(U_{1:H}^{*} + \pi_{t}^{*}) \right) \leq \frac{1}{\sqrt{T}} + \frac{1}{\sqrt{H}}$$

Inter-episodic learning

Best Overall Open-Loop Plan

Intra-episodic learning
Instance-optimal Adaptation

A regret minimization approach to iterative learning control Agarwal, Hazan, Majumdar, Singh ICML '21

Experiment 1: Quadcopter in Wind

Agarwal, Hazan, Majumdar, Singh ICML '21

Experiment 2: Reacher w. Impulses

Agenda

- 1. The basic paradigm of non-stochastic control:
 - Pre-tutorial on OCO
 - Setting
 - Performance metric
 - Methods
- 2. Extensions:
 - unknown systems, partial observability, bandit feedback, black-box control, time-varying systems
- 3. Applications: adversarial noise design and controller verification, planning

Summary

Emerging theory of online non-stochastic control

- 1. Performance metric, motivation, setting
- 2. Gradient-based regret-minimizing controllers (GPC)
- 3. Controlling unknown systems, partially observed & unknown
- 4. Adaptive regret for time varying systems
- 5. Black-box control
- 6. Applications: Controller verification, perturbation-resilient planning
- 7. More info on OCO/regret/adaptive-regret: https://ocobook.cs.princeton.edu/
 More info on NSC: https://sites.google.com/view/nsc-tutorial/home

Thank you

Code: https://www.deluca.fyi/