ICML Tutorial:
Online & Non-stochastic control

% PRINCETON -2-e2 Google Al Microsoft
UNIVERSITY *.°e® Princeton Research

Elad Hazan Karan Singh

Tutorial materials

References (email us for more!)

+ slides, lecture notes, colab notebooks:
https://sites.google.com/view/nsc-tutorial/home

Deluca: more experiments, notebooks

https://sites.google.com/view/nsc-tutorial/home
https://github.com/MinRegret/Deluca

Google DeepMind's

Control vs. RL

3 ale

ME/AE/EE COS Al Breakthrough in Biology

Control of dynamical systems Reinforcement learning
e Autonomous drones e Atari games
* Robotics Go

* Data center cooling
* Medical ventilation

* Protein folding

Differentiable
Reinforcement

Learning

ALL SYSTEMS 60

o

Examples

Observe
Input air+02 lung/airway
flow pressure
— E—)

ey
o

r————

D

---- Target pressure
—— Lung pressure

o

8 10

Pressure (mm Hg)
N
o

Time (s)

Frrrrrrry

*Upcoming NeurlPS/Kaggle ventilator competition!

What is this tutorial about?

Reinforcement Learning / optimal control: _"[AGENT }7

stochastic env., max long-term/discounted reward t

Sensation Reward Action

{ENVIRONMENT}*

Recht, ICML 2018 tutorial: “Control = RL”

Today: “Control # RL”

v

environment w. structure -> Robust, Scalable, Gradient-based methods?

— using online convex optimization & convex relaxations = finite-time regret guarantees

- extends to time-varying systems/planning/partial observation/bandit
information/safety constraints/controller verification...

*Classic Sutton & Barto book

Non-Stochastic
Control

A mini-tutorial:
Online Convex Optimization
(+ convex relaxation)

Non-stochastic control based on OCO + convex relaxations

Online Convex Optimization

Adversary Convex cost

Online Player

function f, Point x, in convex set K in R"
0SS |
fil

I

Total loss 2,

<

fy (x,)

r*eK

Regret — zt: ft (Z‘t) — min zt: ft (Qf*) = o(T) , or R% > reson 0

Examples

1. Online Linear Regression:
K={x| x| < w}
e Loss function f;(x) = (alx — b,)?

2. Online shortest paths:
* K =flow polytope
* Loss function f;(x) = Y., £t x,

3. Online Matrix Completion:

e K={XeR™™ | X |l. < k} matrices with bounded nuclear norm
e Attimet, if a,.= (iy, ji), then loss function f;(x) = (x(i;, j;) — b.)?

Online Portfolio selection, online ranking, online ad placement / revenue maximization,....

Later today: decision set = policy class !

Why is OCO important?

e vs. statistical learning: more general, deterministic guarantees

* Derivation of (offline) optimization algorithms (sublinear convex optimization, adaptive
regularization / AdaGrad, saddle-point optimization....)

* Learning multi-party-games, convergence to equilibria

* Allows efficient algorithms for large, structured hypothesis classes
paths in graphs = flow polytope
low-trace matrices for matrix completion

* Bandit convex optimization,...

* By now, host of techniques/methods developed!

Online gradient descent

Ve+1 = X —NVfe(x¢)

Xt+1 = argmin |Ve+1 — X

Theorem: Regret < 2GDA/T, G = Lipschitz const, D=diameter

. Ve = V£, (xc)
Analysis o

Observation 1: %

Vesr = 2717 = |xg — %717 = 2nV¢ (o — x7) + 12|V, |?
Observation 2: (Pythagoras). x4 1 — x*|? < |yppq1 — x7|?

Thus:
lxep1 — x*|% < |xp — x*|* = 2nV{ (xp — x*) + %[V, |?

Convexity:

E[ft<xt> - i) < Z GRS

Zuxt—x L)+nZ|vt|2

|x1 —x*|? +nTG?* < ZDG\/—

Vi1 = Xt — NVf(xe)

Xe+1 = arg Min [ye

_xl

OGD++ methods for OCO

* Fast rates with 1/t learning rate
* Online Newton Step

* Follow the perturbed leader

* Online Frank Wolfe

* Online Mirror Descent, RFTL

* Deterministic regret = SGD

* Many many extensions...

Introduction to online convex optimization

https://sites.google.com/view/intro-oco/

Agenda

1. The basic paradigm of non-stochastic control:
e Pre-tutorial on OCO
* Setting
* Performance metric
* Methods
2. Extensions:
partial observation, unknown systems, bandit feedback, black-box
control, time-varying systems and non-linearity

3. Advanced settings:
adversarial noise design and controller verification, planning

Part 1: the basics of non-stochastic control

Online control with adversarial perturbations
Agarwal, Bullins, Hazan, Kakade, Singh, ICML ‘19

Control: basic formalization

T PERTURBATIN

O,
min > ¢, (i) .

t=1
st Xer 1= f O ue) wy

x; = state. CONTROL

: (\NPUT)
u; = control input.

v

@ COST

w; = perturbation.

Control: basic formalization

. @ @ @ PERTURBATION

min > ¢ Cr,,1,) N\
(%) £~ @,_>® STATE

S.t. xt_|_1— Atxt + Btut + Wt / ‘ /
x; = state. N "
u; = control input. L l l

w; = perturbation. @ @ é COST

If we know the system, can we find the optimal control?

Optimal control: in principle, yes!

For stochastic perturbation, .

min Z ci (e, up)
u(x)

t=1
S.t. Xt+1= Atxt + Btut —+ Wt

Mathematical (stochastic) optimization problem

T

min z cy (g, up)
u(x)

Example: LQR

S.t. xt+1: Atxt + Btut + Wt

* LQR — Gaussian noise & quadratic costs only
Solution (K, depends on A,,B,)
U = Kxe

- (algebraic Ricatti equation)

The Bellman optimality equation for the system:

Ve_1(x) = muin{xTQx +u'Ru +v.(4ix + Byu)}

Backward induction: assume it’s a quadratic, then opt control is linear in x...
Essentially known from the 60’s, see Rechts’s ICML 2018 tutorial for more information!

T
min z ce (e,)

Example: LQR =

S.t. xt+1: Atxt + Btut + Wt

* LQR — Gaussian noise & quadratic costs only
Solution (K, depends on A,,B,)
U = Kxe

 H,-control:

min max th(ut,xt)

Ki.t [wirl2=C

Pessimistic, computationally ill-behaved for non-quadratics (even convex costs!), non-adaptive

A notion of optimality for arbitrary noise?
1. Regret analysis (adaptive performance metric)

2. Efficient methods for general losses
Tyrrell Rockafellar ‘87: model constraints: complicated optimal policy!

Motivating example

* Fly a drone from source to destination w. unknown weather / wind / rain /
other uncertainties (non-stochastic!) .
(or: track a clinician prescribed waveform - changing costs)

* Optimal/Robust control theory: all possible wind conditions

- H, overly pessimistic
-> H, overly optimistic

* Goal: adaptive control w. best of both worlds:

 efficient + fast when weather permits, careful when needed
* Optimal to instance perturbations
* Finite time provable guarantees

The non-stochastic control problem

Adversarial
noise in the
dynamics!

Known/unknown system, xt+1 — Atxt + Btut + Wt
Ve = Cexy + Deuy + ¢
Ct (yt’ ut)

Input time series u; Output time series y;

"uu’“u" ""A“W‘\J\"\f*

full/partial observation

The non-stochastic control problem

Adversarial
noise in the

Initially: dynamics!
known system, —
full observation Xt+1 Atxt T Btut T Wi
¢t (X, Ug)
Input time series u; Output time series x;

"ufﬂu > M adee

Online control of dynamical systems

Online sequence prediction, t =1, ..., T:
* Observe x;, selectinput u; € R™
* Incurloss. c;(ug, x¢)

Goal: POLICY REGRET (compete with “what would have happened”)

T T
(Y e — Y, e mce)
Wi.T el

t=1 t=1

X; = counterfactual state sequence under ii; = m(X;), Xt11 = AeXe + Belly + wy

Bounded noise |wy| <1

What's a reasonable comparator class?
(and why do we even need one?)

* Linear Policies:

Mg = {mg luy = Kx¢}

* Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

Mipc = {T[A,B,C,B |ut = Csy + Dy;,St41 = Asy + By}

Disturbance-action controllers:

H
lpac =Twm, .y | us = Kexe + Z M;we_;

\ i J

v~

DRC

Disturbance-response controllers:
(

H
Mprec = V7tp,y | Ue = KeYe + z Myt
i

\

-

DAC

J

Hierarchy for LTI systems only!

15t basic result

Efficient algorithm s.t.

T T

z Ct (xt; ut) o min Z Ct (3?15' TL'(J;;)) < 0(\/7)

TL'EHDAC
t=1 t=1

* Efficient = Polynomial in system parameters, logarithmicin T

Up next: analysis main
ideas+algorithm

Ingredient 1: Convex Relaxation of Il

to simplify derivation, assume LTI

* With wy.r known, optimal K is non-convetx problem:
Ur1(K) = Kxpyq = K - (Z(A + BK)th—i)
i=0

i (311 (xc(07) (1))

+ Relaxation (M = {M; ...M;}): is convex!

Ingredient 2: Enforcing stability & learnability

* K; = stabilizing linear policy (for A¢, B)
* Optimal controls:

_ H t
Uy = Kexy + Zilei Wi

1

* Representation Power: With H = — can € -emulate any stable policy.

e Stability: K stablizing = any (non-stationary) error feedback policy is stable.

* How do we find stabilizing K?
[“black-box control”... TBD!]

Ingredient 3: OCO with memory

* Adversarial sequence with time dependency:
— t—
ft(Mf:Hl) = ft(Mlt:H' Mlt:H1' ; M1:Hq

* Regret vs. best fixed decision

M1:H

T
D oMy, MUZT) = min) fo(Myg, ., My) = O(GHNT)
t=1 t

* slow-moving iterative methods, exploiting Lipschitzness

Fundamentally new method:
Gradient Perturbation Controller (GPC)

Initialize M = My, ..., My
Fort=1,...,T do
1. Use control uy = Kyxp + Xjcy M; we_;

2. Observe state x4, 4, compute noise wy = xp41 — A Xy — Brug.

3. Construct cost function:
ft(M) = Ct(xt(Ml:H)»ut(Ml:H))

4, UpdateM

Instantaneous Cost

Gradient perturbation controller: in action

Gaussian Perturbations

40 .
Algorithm
- LQR/H2Control
30 - — GPC
20 -
10 -
0 -
-10
0 100 200 300 400 500
Time

Average Cost

Gaussian Perturbations

Algorithm
- LQR/H2Control
—— GPC

0 100 200 300 400 500
Time

Instantaneous Cost

Gradient perturbation controller: in action

15.0 A1

12.5

10.0 A1

7.5 1

5.0 1

25 1

0.0 1

Non-quadratic Loss + Gaussian Perturbations

Algorithm
- LQR/H2Control
— GPC

".‘l"J| | " ;1 ‘ n} | 1 L |
'p 'M WW" i g ‘}"”ﬂ' '1'\ dul b Ll

1 cﬂ|

0 100 200 300 400 500

Time

Average Cost

W
o
A

Non-quadratic Loss + Gaussian Perturbations

Algorithm
- LQR/H2Control
—— GPC

100 200 300 400 500

Instantaneous Cost

Gradient perturbation controller: in action

Gaussian Random Walk

Algorithm
- LQR/H2Control
— GPC
- OGRWControl

0 100 200 300 400 500
Time

Average Cost

]
o
1

t

[
o
1

v
1

(=]
i

Gaussian Random Walk

Algorithm
= LQR/H2Control
— GPC
- OGRWControl

0 100 200 300 400 500
Time

Gradient perturbation controller: in action

Sinusoidal Perturbations Sinusoidal Perturbations

N m

2 - ”ﬁ”ﬂﬂ ”ﬂ ”ﬂ ”ﬂ ”ﬂ 147
— 12 T
& 20 A "
j _ 2 10 1
3 Algorithm o
0 15 1 —— LQR/H2Control & 8-
£ — GPC N
810 - z &
— 4-

5 1 |

2.
o] | o]
0 100 200 300 400 500 0 100 200 300 400 500

Time Time

Gradient perturbation controller: in action

Sinusoidal Perturbations Sinusoidal Perturbations

Algorithm Algorithm
|l - NoControl - . | = NoControl
— LQR/H2Co

= HinfControl —_—

Vi

-

o

Ui

c

8

c 10° 1

ol

B \

W - —

Agenda

/1. The basic paradigm of non-stochastic control:
* Pre-tutorial on OCO
* Setting
* Performance metric

" Methods

2. Extensions:
partial observation, unknown systems, bandit feedback, black-box

control, time-varying systems and non-linearity

3. Advanced settings:
adversarial noise design and controller verification, planning

Summary — 15t part

1. The power of control: differentiation through the environment

2. Motivation for more robust (adversarial noise), scalable (iterative gradient method,
environment differentiation) new methods

3. The power of online convex optimization and convex relaxation: mini-tutorial on OCO
4. Deriving the Gradient Perturbation Controller (GPC)

5. Resources:
Tutorial website
More info on OCO
COLAB NOTEBOOKS FOR ALL EXPERIMENTS

https://sites.google.com/view/nsc-tutorial/home
https://ocobook.cs.princeton.edu/
https://www.deluca.fyi/

Questions for this tutorial

1. What’s the need for innovation in differentiable reinforcement learning?

What applications are you thinking of and how can they benefit from
new methods?

2. How is online non-stochastic control what you’re doing different from
RL/classical control? Why is this important?

3. W_hat;s the essence of the new methods? What techniques are they
using:

4. Where do you see this field going? What Eotential extensions are there?
What are the hardest unsolved problems:

Agenda

1. The basic paradigm of non-stochastic control:
e Pre-tutorial on OCO
* Setting
* Performance metric
* Methods
2. Extensions:
partial observation, unknown systems, bandit feedback, black-box
control, time-varying systems and non-linearity

3. Advanced settings:
adversarial noise design and controller verification, planning

What if we don’t know the system?

A,B = system

xt_|_1 — Axt + But + Wt
¢t (X, Ug)

Input time series u; Output time series x;

“uu‘"“" "‘A‘V‘VLV'

Non-stochastic control w/o system

* [dentify the system with adversarial (small!) noise!

» Key idea: activate w. random noise (or additive component):
Xeyq1 = Axy + Buy +wy, us ~N(0,X)

* Now: E[x4 pu;] = E[Zi=0:k A' (Bugyp—i + Wt)ut] = A*B

* From here on: Kalman matrix reconstruction, sys-id, GPC...

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19

NSC w. partial observation

State and

system are
xt_|_1 —_ Axt + But + Wt unknown!
Ve = Cx; + Duy + ¢,
Ce (e, Ut)
Input time series u; Output time series y;

“unJl“" "‘A‘\f‘\’l\"\r‘

“Nature’s y’s “ (Youla reparametrization)

Xt_|_1 — Axt + But + Wt
Ve = Cx¢ + Du; + ¢,
ce (Ve Ut)

Zero inputs Output y,; = "nature’s y’s”

_— - —»JH/—\J\»\[—-

What’s a reasonable comparator class?

Linear Policies:

Mg = {mg [uy = Kx}

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

Mipc = {mapcs |ue = Cse + Dye,Sey1 = Asy + By}

Disturbance-action controllers:

H
llpac = {T[MLH | us = Kexe + z M;wy_;
i

\

v

J

Disturbance-response controllers:

H
llprc = {T[Ml:H | us = Keye + Z Myt
i

\

v

V

DAC

Gradient Response Controller (LTI, full obs.)

Initialize M = M, ..., My
Fort=1,..,T do
1. Use control uy = Kx; +)<y M; xf_ait

2. Observe state x;, 4, compute noise and nature’s x:
— nat _ nat
Wi = Xpyp1 — AXxe — Buy, xey = Axe ™ + wy.

3. Construct cost function:
ft(M) = Ct(xt(Ml:H)rut(Ml:H))

4, Update1\7

NSC w. Partial observation

Non-stochastic control ,unknown system & partially observed state:
1. Compete w. llpr,

2. 0(T?/3) regret

3. O(TY?) regret for quadratics: “improper LQG”
(first efficient algorithm even for stochastic setting)

Via: Youla reparametrization, “Nature’s y’s”, online gradient methods

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20

ICML Tutorial:
Online & Non-stochastic control

9 PRINCETON -2 Google Al Microsoft
UNIVERSITY *.“e® Princeton Research
Elad Hazan Karan Singh

https://sites.google.com/view/nsc-tutorial/home

https://sites.google.com/view/nsc-tutorial/home

Adversarial

Recap frOm Pa rt | noise in the

dynamics!

Part I:
Time-invariant

known system, Xty1 = Axt + But + Wt
full observation
Ce(xg, Ur)

ﬂifficient gradient-based algorithm s.t.

T T

TL'EHDAC
t=1 t=1

_

\

zct(xt» u;) — min th(ft»”(@) < O(VT)

/

DAC

Agenda

1. The basic paradigm of non-stochastic control:
* Pre-tutorial on OCO
* Setting
 Performance metric
 Methods

Extensions:
unknown systems, partial observability, bandit feedback, black-box

control, time-varying systems P

a3

-

3. Applications:
adversarial noise design and controller verification, planning

What if we don’t know the system?

A,B = system

xt+1 — Axt —+ But + Wt
Ct(xt' ut)

Input time series u, Output time series x;

““nJu" -»-H—\,J\T

Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.
Non-stochastic perturbations = inconsistent estimates.

Any coarse

.. . . stabilizing matrix K.
Here: inject random noise (or as an additive component):

Xty1 = Axt + But + We, Up ~ N(O, I) or KXt + N(O, I)
* Now: E[Xy tte] = E[Xio 0. A* (Bugin—i + we + x)ue| = A*B
2
* Then: sys-id (i.e. recover A, B), do GPC with estimated system = T3 regret.

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19

Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.
Non-stochastic perturbations = inconsistent estimates.

Any coarse

.. . . stabilizing matrix K&
Here: inject random noise (or as an additive component):

Xty1 = Axt + But + We, Up ~ N(O, I) or KXt + N(O, I)
* Now: E[Xy tte] = E[Xio 0. A* (Bugin—i + we + x)ue| = A*B
2
* Then: sys-id (i.e. recover A, B), do GPC with estimated system = T3 regret.

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19

Without any prior knowledge

How to construct a stabilizing control?

Can construct a stabilizing controller at O(Zd) cost.

2
Leading to O(Zd + T§) regret.

Theorem: Even for noiseless linear systems, ANY control
algorithm has worst case regret:

Z ct (g, up) — nrélri[ILlc (Z Ct(@:”(@)) = Q(Zd)

teT teT

Blackbox Control of Linear Dynamical Sys
Chen, Hazan COLT ‘21

NSC under partial observability

Can only

Xt_|_1 — Axt + But + Wt observe !
Ve = Cx;
Ce (Ve ug)

Input time series u, Output time series y;

“"nJu" "‘H‘VL\F

What’s a reasonable comparator class?

Linear Policies:

Mg = {mg luy = Kx;}

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

Mipc = {T[A,B,C,B |ut = Cs¢ + Dy¢,Sp41 = Asy + By}

e Disturbance-action controllers: GPC plays /
H competes
Mpac = M,y | Ue = Kexp + z Miwy_; against
i

DACs.

Disturbance-response controllers:

H
lpre = { 7M.y | Ue = Keye + Z Myt
i DAC

Can’t calculate w; even
when A, B, C are known.

“Nature’s y's” (rel. Youla reparametrization)

xt_|_1 — Axt + But + Wt
Ve = Cx¢
ce(Ve, Ug)

Zero inputs Output y; = "nature’s y’s”

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20

Source: Hark, A Vagrant

What’s a reasonable comparator class?

Linear Policies:

Mg = {mg luy = Kx;}

Linear Dynamical Controllers: (optimal for partial observation w. Gaussian noise)

Mipc = {T[A,B,C,B |ut = Cs¢ + Dy¢,Sp41 = Asy + By}

Disturbance-action controllers:

H
Mpac = {TTmyy | Ue = Kexe + z M;w,_;
i

Can be
* Disturbance-response controllers: u computed
lprc = Tmyy | Ue = Keye + Z My~ ST
- y: and A, B, C.

Xt+1 — Axt + But + Wt
ye = Cx¢

Gradient Response Controller (partial obs.)

Initialize M = M, ..., My
Fort=1,..,T do
1. Use control u; = Yoy M; y*%

2. Observe y;,1, compute nature’s y:
Vit = Yer1 — CABuy — CA*Buy_q + ..

3. Construct cost function:
ft(M) = Ct(yt(Ml:H)»ut(Ml:H))

4. Update M

—

M PM—UVM&;(M)

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20

NSC under partial observability

Non-stochastic control for partially observed state:
1. Compete w. llpr,

0(T/?) regret for known systems.
0(T?/3) regret for unknown systems.

O(Tl/z) regret for smoothed noise, quadratic loss: “improper LQG”
(first efficient algorithm even for stochastic setting)

SNINUIIAN

Via: Youla reparametrization, “Nature’s y’s”, online gradient methods

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20

Changing LDS

PERTURBATIN

T

min [E zct(xt,ut)

u(x)
t=1

S.t. Xt_|_1= Atxt ~+ Btut + Wt

What’s a reasonable metric?

Let’s go back to online convex @ COST
optimization...

Learning in changing environments:
online shortest paths

source

destination

Learning in changing environment

Summe.r source 3
Congestlon

destination

Learning in changing environment

Winter source 5
congestion

destination

Regret minimization (OGD, FTRL, ONS,...)

summer — optimal path.
winter — very slow shift
from p, to p,

regret does not capture movement!
Convergence is good for regret, but...

Adaptive Regret

X, X, X3 X:
| | | J |
| | | |
fl f2 f3 fT
*
> felae) — min > fi(ah)
teJ z; teJ

Efficient learning for changing environments
Hazan, Seshadhri ICML ‘09 +

Adaptive Regret

Xq X5 X3 Xt
| | | J |
| | | |
fl f2 f3 fT
Adaptive Regret = sup[z fi(x¢) — min Z fe(x7)]
J teg I oteg

* Max regret over all intervals
* Different optimum x*, for every interval J
* Captures movement of optimum as time progresses

e We want Adaptive Regret = o(T)

* In any interval of size ®(AR), algorithm converges to optimum
(on smaller interval we cannot guarantee anything)

* More general than “dynamic regret” and other notions

Efficient learning for changing environments
Hazan, Seshadhri ICML ‘09

Adaptive Regret for Control

[sup {z cGeug) = min (Z ct(ft,ﬂ(@)) } <VL<A~T

tel tel

|

* Maintain a working set of log(T) GPC algorithms

* Merge their control according to an exponential weighting scheme
e Adaptation of FLH (follow-the-leading-history) method for OCO

* log(T) overhead in running time & memory

Magician
=GPC

Adaptive Regret for Control of Time-Varying Dyn
Gradu, Hazan, Minasyan ‘20

Agenda

1. The basic paradigm of non-stochastic control:
* Pre-tutorial on OCO
* Setting
 Performance metric
 Methods

2. Extensions:
unknown systems, partial observability, bandit feedback, black-box

control, time-varying systems

3. Applications:
adversarial noise design and controller verification, planning

How it fits in: Nonstochastic Control

Control-based strategies are often modular.

'r

FEEDBACK 5 ENVIRONMENT
CONTROL = makeq 'gww«?ﬁm

(}tcliiw) \L

! STATE ESTIMATION ¢ SENSORS
- -TEAU'E_CT_UR;) —e = - = 'l‘ LOCAL\IATIUN [pi,ne,)..‘/an?fm)
T RANSCR\PT

Convex Policy Parametrization for Linear Control
Thtl = Az, + Buy, + wy,

_
up = Kap, vs. up =) . Mywp_;

Controller verification

How can we certify a controllers’ correct behavior?
- Generate maximally adversarial online perturbation

Generating Adversarial Disturbances for Controller Verification
Ghai, Snyder, Majumdar, Hazan L4DC 21

Noise <-> control

xt_|_1 — Atxt + Btut + Wt

Ct (xt ut) Maximization vs. Min
’ Online Trust Region

Input time series u, Output time series x;

Generating Adversarial Disturbances for Controller Verification
Ghai, Snyder, Majumdar, Hazan L4DC 21

Experiments with airsim

SimpleFlight Robust PID Controller PX4 Cascaded PID Controller
25
- e
Disturbance Generator 25
20 —— MOTR
HINF
8 151 — Rand S
o — (Gauss ()
s — Sin ‘éf’ 15
e]
g 10 | <>:
< R 10 |
5
5
0 ad - T
20 40 60 80 100 120 140 2'0 40 6'0 P 0 1 00 1i0 140
Time (s) Time (s)

Generating Adversarial Disturbances for Controller Verification
Ghai, Snyder, Majumdar, Hazan L4DC ‘21

10

U

10

10

7! w\ LR %h.”?jj/r//r/'/v
A x \..tl.vl.v.....rlir/?./r/r/r/v
“ A 2 > > |vlr.....r/.r./.w./r/r/r/r/
1 4 » > |Yl.r.....?/l/r./r/7/r/i/

4 “_ A =~ //P/r/
A S RN NN
G R S S NN

A S S S
L e B T I SR

A A o
////,y,r_,_..‘,...
A A7 vl oo
= F F
A 7 > =
, /
w4
%,
ooy
LSS

R % v ko B}
NR w4 £y |
/4///4/4//.?4 < 4 ¥ oy
/4/1/4//4/4/4/4:.4..4 A
NN >

S/
S/
S/
/S
/A
Va4

P4

/7777/fff+u»\\1
NN S - & g oy
Z/fof?ll#l “ ¥y
4//4/4/ S~ - L

/

-

[

//ffﬂldl'1

Data-driven Planning VAR s
Learn an (adaptive) policy SRR TS SSSau:
+ given an approximate model ‘ S NI e —]
+ subject to changing, unknown perturbations _ ,'
+ in a handful of episodes DDy LA P
NI
4
()

+Arises in real-world applications
+ Sandboxed setup for sim2real, meta-learning, policy transfer

PrOblem Sett|ng Compare:

Iterative LQR > no perturbations
Episode 1 of T W

Iterative LQG > Gaussian perturbations
Model Predictive Control > One-shot

Learner has a model f(x,u

Timestep 1 of H

Iterative Learning Control > Same setup
(here)

Unknown, Nonstationary

Play action uy, Perturbations

Xn+1 = flxp,up) +w

(arbitrary, no dist. assumption)
Suffer ¢ (Xp, U h) (changes every step, every episode)

Episodic Cost; =).y, cp(xp,up)

Objective: Planning Regret

-episodic learning
Best Overall Open-Loop Plan

-episodic learning

Instance-optimal Adaptation

T T
Z Costy(Alg) ~ min Z min Costy(Uf.y + 7;)
P 1:H ,_q 't

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21

Planning Regret Bound

-episodic learning -episodic learning
Best Overall Open-Loop Plan Instance-optimal Adaptation

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21

n W

Experiment 1: Quadcopter i

////41444
%%///////////;j//)+_
//////////////)))))
////////4/////; \\\\\
T T
/4 1,1,_,**\\ L
;////f//f:i,,.,**\‘:;
{ffffflﬂ4,,>§*‘*\
T?1ﬁ4444,>**‘ A
R I AR ::tt
:::: DD ESSAEERE!
\\\\“*<“’Vb‘/¢/1|/j
NNARRBE R EE N F YRRy
Ja it LTIV ED,
:::::::Z%ﬁﬁ%% No Adapation
e - s T
& WE
A —4 (//"r/////

Planar Quadrotor with Wind=0.4

Planar Quadrotor with Wind=0.3

Iterative Learning

Control

iLQR (closed)
— iLQR (oracle)
— iLC
— iGPC

Our Algorithm

Planar Quadrotor with Wind=0.2
\ 3500 A \\
4000 -
800 T 3000 .
2500 -
_ _ 3000 -
600 - iLQR (closed) iLQR (closed)
o —— iLQR (oracle) + 2000 1 — iLQR (oracle) 2
S — iLC S — iLC S
400 — iGPC 1500 - — iGPC 2000 A
1000 A
1000 A
200 1
500 +
0 -
2 4 6 8 10 12 14 0 2 4 6 8 10 3
No. of Rollots Impossible (Oracle)

0

Baseline

No. of Rollouts

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21

15 20 25 30 35 40
No. of Rollouts

10

Experiment 2: Reacher w. Impulses

Reacher with Impulse=10.0

Reacher with Impulse=20.0

Reacher with Impulse=30.0

No Adapation

4000 1
ILQG ILQG 2000 ILQG
2250 4 — ILQR (oracle) 3500 1 —— ILQR (oracle) 4500 - —— ILQR (oracle)
— ILC — ILC — ILC
3500
2500
3 i 3000 - : g
3 3 Iterative Learning
2000 - 2500 - Control
2000
1500
_ | 1500
1000
1000
: : : : . ; : : , , . . Our Algorithm

MNo. of Rollouts

4 B B 10
MNo. of Rollouts

MNo. of Rollouts

Impossible (Oracle)

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21

Baseline

Agenda

1. The basic paradigm of non-stochastic control:
* Pre-tutorial on OCO
* Setting
 Performance metric
 Methods

2. Extensions:
unknown systems, partial observability, bandit feedback, black-box

control, time-varying systems

3. Applications:
adversarial noise design and controller verification, planning

summary

Emerging theory of online non-stochastic control

Performance metric, motivation, setting

Gradient-based regret-minimizing controllers (GPC)
Controlling unknown systems, partially observed & unknown
Adaptive regret for time varying systems

Black-box control

Applications: Controller verification, perturbation-resilient planning

N o Uk w N E

More info on OCO/regret/adaptive-regret: https://ocobook.cs.princeton.edu/
More info on NSC: https://sites.google.com/view/nsc-tutorial/home
Code: https://www.deluca.fyi/

https://ocobook.cs.princeton.edu/
https://sites.google.com/view/nsc-tutorial/home
https://www.deluca.fyi/

