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Tutorial materials

References (email us for more!)

+ slides, lecture notes, colab notebooks: 
https://sites.google.com/view/nsc-tutorial/home

Deluca: more experiments, notebooks

https://sites.google.com/view/nsc-tutorial/home
https://github.com/MinRegret/Deluca


Control of dynamical systems
• Autonomous drones
• Robotics
• Data center cooling
• Medical ventilation

Control vs. RL

Reinforcement learning
• Atari games
• Go
• Protein folding

Differentiable 
Reinforcement 

Learning

ME/AE/EE COS



Examples

Input air+O2 
flow

Observe 
lung/airway 
pressure 

*Upcoming NeurIPS/Kaggle ventilator competition! 



What is this tutorial about?

environment w. structure è Robust, Scalable, Gradient-based methods?

à using online convex optimization & convex relaxations à finite-time regret guarantees 
à extends to time-varying systems/planning/partial observation/bandit 
information/safety constraints/controller verification…

*Classic Sutton & Barto book 

Reinforcement Learning /  optimal control:
stochastic env., max long-term/discounted reward

Recht, ICML 2018 tutorial: “Control ≈ RL” 

Today: “Control ≠ RL” 



Non-Stochastic 
Control

Model-based
RL

Online convex optimization

Convex
Relaxation



A mini-tutorial: 
Online Convex Optimization

(+ convex relaxation)

Non-stochastic control based on OCO + convex relaxations



Online Convex Optimization

Point  xt in convex set K in Rn

Convex cost
function ft

Total loss Σt ft (xt)

loss
ft(xt)

Online PlayerAdversary

Regret =
X

t

ft(xt)� min
x⇤2K

X

t

ft(x
⇤) = o T , or  !"#

$
↦$↦& 0



Examples

1. Online Linear Regression:
• 𝐾 = 𝑥 | ∥ 𝑥 ∥ ≤ 𝜔
• Loss function 𝑓' 𝑥 = 𝑎'$𝑥 − 𝑏' (

2. Online shortest paths:
• K  = flow polytope
• Loss function 𝑓' 𝑥 = ∑" ℓ"'𝑥"

3. Online Matrix Completion:
• K = 𝑋 ∈ 𝑅) ×) , ∥ 𝑋 ∥∗ ≤ 𝑘 matrices with bounded nuclear norm
• At time t, if at = (it, jt), then loss function 𝑓' 𝑥 = 𝑥 𝑖' , 𝑗' − 𝑏' (

Online Portfolio selection, online ranking, online ad placement / revenue maximization,….

Later today: decision set = policy class ! 



Why is OCO important?
• vs. statistical learning:   more general, deterministic guarantees

• Derivation of (offline) optimization algorithms (sublinear convex optimization, adaptive 
regularization / AdaGrad, saddle-point optimization….)

• Learning multi-party-games, convergence to equilibria 

• Allows efficient algorithms for large, structured hypothesis classes 
paths in graphs = flow polytope
low-trace matrices for matrix completion
… 
• Bandit convex optimization,…

• By now, host of techniques/methods developed! 



Online gradient descent 

Theorem:  Regret ≤ 2𝐺𝐷 𝑇, G = Lipschitz const, D=diameter

𝑦<=> = 𝑥< − 𝜂∇𝑓< 𝑥<

𝑥<=> = argmin
?∈@

|𝑦<=> − 𝑥|



Observation 1:
𝑦',- − 𝑥∗ ( = 𝑥' − 𝑥∗ ( − 2𝜂∇'$ 𝑥' − 𝑥∗ + η( ∇' (

Observation 2:  (Pythagoras).    𝑥',- − 𝑥∗ ( ≤ 𝑦',- − 𝑥∗ (

Thus:
𝑥',- − 𝑥∗ ( ≤ 𝑥' − 𝑥∗ ( − 2𝜂∇'$ 𝑥' − 𝑥∗ + η( ∇' (

Convexity:

G
'

[𝑓' 𝑥' − 𝑓'(𝑥∗)] ≤G
'

∇'$(𝑥' − 𝑥∗)

≤
1
𝜂G

'

𝑥' − 𝑥∗ ( − 𝑥',- − 𝑥∗ ( + 𝜂G
'

∇' (

≤
1
𝜂 𝑥- − 𝑥∗ ( + 𝜂𝑇𝐺( ≤ 2𝐷𝐺 𝑇

Analysis
𝛻< ≔ 𝛻𝑓<(𝑥<)

𝑦!"# = 𝑥! − 𝜂∇𝑓! 𝑥!

𝑥!"# = argmin
$∈&

|𝑦!"# − 𝑥|



• Fast rates with 1/t learning rate 
• Online Newton Step
• Follow the perturbed leader 
• Online Frank Wolfe 
• Online Mirror Descent , RFTL
• Deterministic regret  à SGD
• Many many extensions…

OGD++ methods for OCO

Introduction to online convex optimization

https://sites.google.com/view/intro-oco/


Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO
• Setting
• Performance metric
• Methods

2. Extensions: 
partial observation, unknown systems, bandit feedback, black-box 
control, time-varying systems and non-linearity

3. Advanced settings: 
adversarial noise design and controller verification, planning 



Online control with adversarial perturbations
Agarwal, Bullins, Hazan, Kakade, Singh, ICML ‘19

Part 1:  the basics of non-stochastic control



Control: basic formalization

min
0(2)

$
456

7

𝑐4 𝑥4 , 𝑢4

s.t. 𝑥486= 𝑓(𝑥4 , 𝑢4) +𝑤4

𝑥4 = state.
𝑢4 = control input.
𝑤4 = perturbation.



Control: basic formalization

min
0(2)

$
456

7

𝑐4 𝑥4 , 𝑢4

s.t. 𝑥486= 𝐴4𝑥4 + 𝐵4𝑢4 +𝑤4

𝑥4 = state.
𝑢4 = control input.
𝑤4 = perturbation.

If we know the system, can we find the optimal control?



Optimal control: in principle, yes!

For	stochastic	perturbation,

min
'())

E
!+#

,

𝑐! 𝑥!, 𝑢!

s.t. 𝑥!"#= 𝐴!𝑥! + 𝐵!𝑢! + 𝑤!

Mathematical (stochastic) optimization problem 



Example: LQR

• LQR – Gaussian noise & quadratic costs only 
Solution (Kt depends on At,Bt)

𝑢! = 𝐾!𝑥!

à (algebraic Ricatti equation) 
The Bellman optimality equation for the system: 

𝑣!-#(𝑥) = min
.

𝑥,𝑄𝑥 + 𝑢,𝑅 𝑢 + 𝑣!(𝐴!𝑥 + 𝐵!𝑢)

Backward induction: assume it’s a quadratic, then opt control is linear in x…
Essentially known from the 60’s, see Rechts’s ICML 2018 tutorial for more information!

min
.(0)

G
'2-

$

𝑐' 𝑥' , 𝑢'

s.t. 𝑥',-= 𝐴'𝑥' + 𝐵'𝑢' + 𝑤'



Example: LQR

• LQR – Gaussian noise & quadratic costs only 
Solution (Kt depends on At,Bt)

𝑢! = 𝐾!𝑥!

• 𝐻/-control: 

min
0!:#

max
|2!:$|%34

E
!

𝑐! 𝑢!, 𝑥!

Pessimistic, computationally ill-behaved for non-quadratics (even convex costs!), non-adaptive

A notion of optimality for arbitrary noise?

1. Regret analysis (adaptive performance metric)
2. Efficient methods for general losses

Tyrrell Rockafellar ‘87: model constraints: complicated optimal policy!

min
.(0)

G
'2-

$

𝑐' 𝑥' , 𝑢'

s.t. 𝑥',-= 𝐴'𝑥' + 𝐵'𝑢' + 𝑤'



Motivating example

• Fly a drone from source to destination w. unknown weather / wind / rain / 
other uncertainties (non-stochastic!)
(or: track a clinician prescribed waveform - changing costs)

• Optimal/Robust control theory: all possible wind conditions 
à 𝐻& overly pessimistic
à 𝐻( overly optimistic 

• Goal: adaptive control w. best of both worlds: 
• efficient + fast when weather permits, careful when needed
• Optimal to instance perturbations
• Finite time provable guarantees



The non-stochastic control problem

𝑥!"# = 𝐴!𝑥! + 𝐵!𝑢! +𝑤!
𝑦! = 𝐶!𝑥! + 𝐷!𝑢! + 𝜁!

𝑐! 𝑦! , 𝑢!
Input time series 𝒖𝒕 Output time series 𝒚𝒕

𝒙𝒕

Adversarial 
noise in the 
dynamics!

Known/unknown system,
full/partial observation



The non-stochastic control problem

𝑥!"# = 𝐴!𝑥! + 𝐵!𝑢! +𝑤!
𝑐! 𝑥! , 𝑢!

Input time series 𝒖𝒕 Output time series 𝒙𝒕

𝒙𝒕

Adversarial 
noise in the 
dynamics!Initially: 

known system,
full observation



Online control of dynamical systems

• Online sequence prediction,  𝑡 = 1,… , 𝑇:
• Observe x! , select input 𝑢" ∈ 𝑅#
• Incur loss. 𝑐" 𝑢" , 𝑥"

• Goal: POLICY REGRET (compete with “what would have happened”)

max
2!:$

E
!+#

,

𝑐! 𝑥!, 𝑢! − min
5∈6

E
!+#

,

𝑐! T𝑥! , 𝜋(T𝑥!)

• T𝑥! = counterfactual state sequence under T𝑢! = 𝜋(T𝑥!),   T𝑥!"# = 𝐴! T𝑥! + 𝐵! T𝑢! + 𝑤!
• Bounded noise |𝑤!| ≤ 1



What’s a reasonable comparator class?
(and why do we even need one?) 
• Linear Policies:

Π! = 𝜋" 𝑢# = 𝐾𝑥#}

• Linear Dynamical Controllers:  (optimal for partial observation w. Gaussian noise)

Π$%& = 𝜋',),*,) 𝑢# = 𝐶𝑠# + 𝐷𝑦# , 𝑠#+, = 𝐴𝑠# + 𝐵𝑦#}

• Disturbance-action controllers:

Π%-& = 𝜋.!:# | 𝑢# = 𝐾#𝑥# +F
/

0

𝑀/𝑤#1/

• Disturbance-response controllers:

Π%2& = 𝜋.!:# | 𝑢# = 𝐾#𝑦# +F
/

0

𝑀/𝑦#1/34#

LDC

DRC

DAC

Linear

Hierarchy for LTI systems only!



1st basic result

Efficient algorithm s.t.

!
;<=

>

𝑐; 𝑥; , 𝑢; − min
?∈AXYZ

!
;<=

>

𝑐; *𝑥; , 𝜋(-𝑥;) ≤ 𝑂( 𝑇)

• Efficient → Polynomial in system parameters, logarithmic in T

Up next: analysis main 
ideas+algorithm



Ingredient 1: Convex Relaxation of Π.
to simplify derivation, assume LTI
• With 𝑤!:# known, optimal K is non-convex problem:

𝑢$%!(𝐾) = 𝐾𝑥$%! = 𝐾 ⋅ )
&'(

$

𝐴 + 𝐵𝐾 &𝑤$)&

• Relaxation (𝑀 = {𝑀! …𝑀$}): 

𝑢$%! 𝑀 = 𝑀$ ⋅ 𝑤$ = )
&'(

$

𝑀&𝑤$)&

min
]

∑<^>_ 𝑐 𝑥< 𝑀 ,𝑢< 𝑀
is convex!



Ingredient 2: Enforcing stability & learnability
• K[ = stabilizing linear policy (for 𝐴4 , 𝐵4)
• Optimal controls:

• Representation Power: With 𝐻 ≈ 6
\
, can 𝜖 -emulate any stable policy.

• Stability: K stablizing ⇒ any (non-stationary) error feedback policy is stable.

• How do we find stabilizing K? 
[“black-box control”… TBD!]

𝑢4 = 𝐾4𝑥4 + ∑]56^ 𝑀]
4𝑤4_]



Ingredient 3: OCO with memory 

• Adversarial sequence with time dependency:

𝑓< 𝑀>:a< | … = 𝑓< 𝑀>:a< , 𝑀>:a<b>, … ,𝑀>:a
<bc

• Regret vs. best fixed decision

I
<^>

_

𝑓<(𝑀>:a< , … ,𝑀>:a
<bc) − min

]!:#
I
<

𝑓< 𝑀>:a, … ,𝑀>:a = 𝑂(𝑞𝐻 𝑇)

• slow-moving iterative methods, exploiting Lipschitzness



Initialize 𝑀 = 𝑀>, … ,𝑀a
For 𝑡 = 1,… , 𝑇 do

1. Use control 𝑢< = 𝐾<𝑥< + ∑dea𝑀d 𝑤<bd

2. Observe state 𝑥<=>, compute noise 𝑤< = 𝑥<=> − 𝐴<𝑥< − 𝐵<𝑢<.

3. Construct cost function:
ℓ< 𝑀 = 𝑐< 𝑥< 𝑀>:a , 𝑢< 𝑀>:a

4. Update 𝑀
𝑀 ← 𝑀 − 𝜂 𝛻] ℓ< 𝑀

Fundamentally new method:
Gradient Perturbation Controller (GPC)



Gradient perturbation controller: in action



Gradient perturbation controller: in action



Gradient perturbation controller: in action



Gradient perturbation controller: in action



Gradient perturbation controller: in action



Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO
• Setting
• Performance metric
• Methods

2. Extensions: 
partial observation, unknown systems, bandit feedback, black-box 
control, time-varying systems and non-linearity

3. Advanced settings: 
adversarial noise design and controller verification, planning 



1. The power of control: differentiation through the environment
2. Motivation for more robust (adversarial noise), scalable (iterative gradient method, 

environment differentiation) new methods
3. The power of online convex optimization and convex relaxation: mini-tutorial on OCO
4. Deriving the Gradient Perturbation Controller (GPC)
5. Resources:

Tutorial website
More info on OCO
COLAB NOTEBOOKS FOR ALL EXPERIMENTS

Summary – 1st part

https://sites.google.com/view/nsc-tutorial/home
https://ocobook.cs.princeton.edu/
https://www.deluca.fyi/


Questions for this tutorial

1. What’s the need for innovation in differentiable reinforcement learning? 
What applications are you thinking of and how can they benefit from 
new methods? 

2. How is online non-stochastic control what you’re doing different from 
RL/classical control?  Why is this important? 

3. What’s the essence of the new methods? What techniques are they 
using? 

4. Where do you see this field going? What potential extensions are there?
What are the hardest unsolved problems? 



Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO
• Setting
• Performance metric
• Methods

2. Extensions: 
partial observation, unknown systems, bandit feedback, black-box 
control, time-varying systems and non-linearity

3. Advanced settings: 
adversarial noise design and controller verification, planning 



What if we don’t know the system? 

𝑥!"# = 𝐴𝑥! + 𝐵𝑢! +𝑤!
𝑐! 𝑥! , 𝑢!

Input time series 𝒖𝒕 Output time series 𝒙𝒕

𝒙𝒕

A,B = system



Non-stochastic control w/o system

• Identify the system with adversarial (small!) noise! 

• Key idea:  activate w. random noise (or additive component):
𝑥486 = 𝐴𝑥4 + 𝐵𝑢4 +𝑤4 , 𝑢4 ∼ 𝑁 0, Σ

• Now: E 𝑥48`𝑢4 = 𝐸 ∑]5a:` 𝐴] 𝐵𝑢48`_] +𝑤4 𝑢4 = 𝐴`𝐵

• From here on: Kalman matrix reconstruction, sys-id, GPC… 

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19



NSC w. partial observation

𝑥!"# = 𝐴𝑥! + 𝐵𝑢! +𝑤!
𝑦! = 𝑪𝑥! +𝑫𝑢! + 𝜁!

𝑐! 𝑦! , 𝑢!

Input time series 𝒖𝒕 Output time series 𝒚𝒕

𝒙𝒕

State and 
system are 
unknown!



“Nature’s y’s “   (Youla reparametrization)

𝑥!"# = 𝐴𝑥! + 𝐵𝑢! +𝑤!
𝑦! = 𝑪𝑥! +𝑫𝑢! + 𝜁!

𝑐! 𝑦! , 𝑢!

Zero inputs Output 𝒚𝒕 = ”nature’s y’s”

𝒙𝒕



What’s a reasonable comparator class? 
• Linear Policies:

Π! = 𝜋" 𝑢# = 𝐾𝑥#}

• Linear Dynamical Controllers:  (optimal for partial observation w. Gaussian noise)

Π$%& = 𝜋',),*,) 𝑢# = 𝐶𝑠# + 𝐷𝑦# , 𝑠#+, = 𝐴𝑠# + 𝐵𝑦#}

• Disturbance-action controllers:

Π%-& = 𝜋.!:# | 𝑢# = 𝐾#𝑥# +F
/

0

𝑀/𝑤#1/

• Disturbance-response controllers:

Π%2& = 𝜋.!:# | 𝑢# = 𝐾#𝑦# +F
/

0

𝑀/𝑦#1/
34#

LDC

DRC

DAC

Linear



Initialize 𝑀 = 𝑀>, … ,𝑀a
For 𝑡 = 1,… , 𝑇 do

1. Use control 𝑢< = 𝐾𝑥< + ∑dea𝑀d 𝑥<bdfg<

2. Observe state 𝑥<=>, compute noise and nature’s x:
𝑤< = 𝑥<=> − 𝐴𝑥< − 𝐵𝑢< , 𝑥<=>fg< = 𝐴𝑥<fg< +𝑤<.

3. Construct cost function:
ℓ< 𝑀 = 𝑐< 𝑥< 𝑀>:a , 𝑢< 𝑀>:a

4. Update 𝑀
𝑀 ← 𝑀 − 𝜂 𝛻] ℓ< 𝑀

Gradient Response Controller (LTI, full obs.)



NSC w. Partial observation

Non-stochastic control ,unknown system & partially observed state: 
1. Compete w. Πcde
2. 𝑂(𝑇f/h) regret 
3. 𝑂(𝑇6/f) regret for quadratics: “improper LQG” 

(first efficient algorithm even for stochastic setting)
Via: Youla reparametrization, “Nature’s y’s”, online gradient methods

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20



ICML Tutorial:
Online & Non-stochastic control

Elad Hazan Karan Singh

https://sites.google.com/view/nsc-tutorial/home

https://sites.google.com/view/nsc-tutorial/home


Recap from Part I

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡
𝑐𝑡 𝑥𝑡, 𝑢𝑡

Adversarial 
noise in the 
dynamics!

Part I:
Time-invariant 
known system,
full observation

Efficient gradient-based algorithm s.t.

෍

𝑡=1

𝑇

𝑐𝑡 𝑥𝑡 , 𝑢𝑡 − min
𝜋∈Π𝐷𝐴𝐶

෍

𝑡=1

𝑇

𝑐𝑡 ෝ𝑥𝑡, 𝜋(෢𝑥𝑡) ≤ 𝑂( 𝑇)

LDC

DRC

DAC

Linear



Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO

• Setting

• Performance metric

• Methods

2. Extensions: 
unknown systems, partial observability, bandit feedback, black-box 
control, time-varying systems

3. Applications: 
adversarial noise design and controller verification, planning 



What if we don’t know the system? 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡
𝑐𝑡 𝑥𝑡, 𝑢𝑡

Input time series 𝒖𝒕 Output time series 𝒙𝒕

𝒙𝒕

A,B = system



Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.

Non-stochastic perturbations ⇒ inconsistent estimates. 

Here: inject random noise (or as an additive component):

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡 , 𝑢𝑡 ∼ 𝑁 0, I 𝑜𝑟 𝐾xt +𝑁 0, I

• Now: E 𝑥𝑡+𝑘𝑢𝑡 = 𝐸 σ𝑖=0:𝑘 𝐴
𝑖 𝐵𝑢𝑡+𝑘−𝑖 +𝑤𝑡 + 𝑥𝑡 𝑢𝑡 = 𝐴𝑘𝐵

• Then: sys-id (i.e. recover A, B), do GPC with estimated system → 𝑇
2

3 regret.

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19

Any coarse 
stabilizing matrix K.



Non-stochastic control for unknown system

Stochastic Noise: Use MLE/least-squares to recover parameters.

Non-stochastic perturbations ⇒ inconsistent estimates. 

Here: inject random noise (or as an additive component):

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡 , 𝑢𝑡 ∼ 𝑁 0, I 𝑜𝑟 𝐾xt +𝑁 0, I

• Now: E 𝑥𝑡+𝑘𝑢𝑡 = 𝐸 σ𝑖=0:𝑘 𝐴
𝑖 𝐵𝑢𝑡+𝑘−𝑖 +𝑤𝑡 + 𝑥𝑡 𝑢𝑡 = 𝐴𝑘𝐵

• Then: sys-id (i.e. recover A, B), do GPC with estimated system → 𝑇
2

3 regret.

The nonstochastic control problem
Hazan, Kakade, Singh, ALT ‘19

Any coarse 
stabilizing matrix K.



Without any prior knowledge

How to construct a stabilizing control?

Can construct a stabilizing controller at 𝑂 2𝑑 cost.

Leading to 𝑂 2𝑑 + 𝑇
2

3 regret.

Blackbox Control of Linear Dynamical Sys
Chen, Hazan COLT ‘21

Theorem: Even for noiseless linear systems, ANY control 
algorithm has worst case regret: 

෍

𝑡∈𝑇

𝑐𝑡 𝑥𝑡 , 𝑢𝑡 − min
𝜋∈Π𝐿𝐶

෍

𝑡∈𝑇

𝑐𝑡 ෝ𝑥𝑡 , 𝜋(෢𝑥𝑡) ≥ Ω(2𝑑)



NSC under partial observability

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡
𝑦𝑡 = 𝑪𝑥𝑡
𝑐𝑡 𝑦𝑡, 𝑢𝑡

Input time series 𝒖𝒕 Output time series 𝒚𝒕

𝒙𝒕

Can only 
observe 𝑦𝑡!



What’s a reasonable comparator class? 

• Linear Policies:

ΠK = 𝜋𝐾 𝑢𝑡 = 𝐾𝑥𝑡}

• Linear Dynamical Controllers:  (optimal for partial observation w. Gaussian noise)

ΠLDC = 𝜋𝐴,𝐵,𝐶,𝐵 𝑢𝑡 = 𝐶𝑠𝑡 + 𝐷𝑦𝑡 , 𝑠𝑡+1 = 𝐴𝑠𝑡 + 𝐵𝑦𝑡}

• Disturbance-action controllers:

ΠDAC = 𝜋𝑀1:𝐻
| 𝑢𝑡 = 𝐾𝑡𝑥𝑡 +෍

𝑖

𝐻

𝑀𝑖𝑤𝑡−𝑖

• Disturbance-response controllers:

ΠDRC = 𝜋𝑀1:𝐻
| 𝑢𝑡 = 𝐾𝑡𝑦𝑡 +෍

𝑖

𝐻

𝑀𝑖𝑦𝑡−𝑖
𝑛𝑎𝑡

LDC

DRC

DAC

LinearGPC plays / 
competes 

against 
DACs.

Can’t calculate 𝑤𝑡 even 
when A, B, C are known.



“Nature’s y’s”   (rel. Youla reparametrization)

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡
𝑦𝑡 = 𝑪𝑥𝑡
𝑐𝑡 𝑦𝑡, 𝑢𝑡

Zero inputs Output 𝒚𝒕 = ”nature’s y’s”

𝒙𝒕

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20



What’s a reasonable comparator class? 

• Linear Policies:

ΠK = 𝜋𝐾 𝑢𝑡 = 𝐾𝑥𝑡}

• Linear Dynamical Controllers:  (optimal for partial observation w. Gaussian noise)

ΠLDC = 𝜋𝐴,𝐵,𝐶,𝐵 𝑢𝑡 = 𝐶𝑠𝑡 + 𝐷𝑦𝑡 , 𝑠𝑡+1 = 𝐴𝑠𝑡 + 𝐵𝑦𝑡}

• Disturbance-action controllers:

ΠDAC = 𝜋𝑀1:𝐻
| 𝑢𝑡 = 𝐾𝑡𝑥𝑡 +෍

𝑖

𝐻

𝑀𝑖𝑤𝑡−𝑖

• Disturbance-response controllers:

ΠDRC = 𝜋𝑀1:𝐻
| 𝑢𝑡 = 𝐾𝑡𝑦𝑡 +෍

𝑖

𝐻

𝑀𝑖𝑦𝑡−𝑖
𝑛𝑎𝑡

LDC

DRC

DAC

Linear

Can be 
computed 

purely from 
𝑦𝑡 and A, B, C.

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 +𝑤𝑡
𝑦𝑡 = 𝑪𝑥𝑡

Source: Hark, A Vagrant



Initialize 𝑀 = 𝑀1, … ,𝑀𝐻

For 𝑡 = 1,… , 𝑇 do

1. Use control 𝑢𝑡 = σ𝑖≤𝐻𝑀𝑖 𝑦𝑡−𝑖
𝑛𝑎𝑡

2. Observe 𝑦𝑡+1, compute nature’s y:
𝑦𝑡+1
𝑛𝑎𝑡 = 𝑦𝑡+1 − 𝐶𝐴𝐵𝑢𝑡 − 𝐶𝐴2𝐵𝑢𝑡−1 +⋯ ..

3. Construct cost function:

ℓ𝑡 𝑀 = 𝑐𝑡 𝑦𝑡 𝑀1:𝐻 , 𝑢𝑡 𝑀1:𝐻

4. Update 𝑀

𝑀 ← 𝑀 − 𝜂 𝛻𝑀 ℓ𝑡 𝑀

Gradient Response Controller (partial obs.)

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20



NSC under partial observability

Non-stochastic control for partially observed state: 

1. Compete w. Π𝐷𝐹𝐶
2. 𝑂(𝑇1/2) regret for known systems.

3. 𝑂(𝑇2/3) regret for unknown systems.

4. 𝑂(𝑇1/2) regret for smoothed noise, quadratic loss: “improper LQG” 
(first efficient algorithm even for stochastic setting)

Via: Youla reparametrization, “Nature’s y’s”, online gradient methods

Improper learning for non-stochastic control
Simchowitz, Singh, Hazan, COLT ‘20



Changing LDS

min
u(x)

𝔼 ෍

𝑡=1

𝑇

𝑐𝑡 𝑥𝑡 , 𝑢𝑡

s.t. 𝑥𝑡+1= 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡

What’s a reasonable metric?

Let’s go back to online convex 
optimization…
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Learning in changing environments:
online shortest paths 

source

destination

1

1

1
3

3

3

3

3

3

3
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Learning in changing environment

source

destination

1

1

1
3

3

3

3

3

3

3

Summer

congestion
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Learning in changing environment

source

destination

3

3

3
2

2

2

3

3

3

3

Winter

congestion
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Regret minimization (OGD, FTRL, ONS,…)

regret does not capture movement!
Convergence is good for regret, but…

summer – optimal path. 

winter – very slow shift 

from p1 to p2

1,3

1,3

1,3
3,2

3,2

3,2
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Adaptive Regret

f1
f2 f3 fT

J
x1 x2 x3 xT

Efficient learning for changing environments
Hazan, Seshadhri ICML ‘09
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Adaptive Regret

• Max regret over all intervals
• Different optimum x*J for every interval J

• Captures movement of optimum as time progresses

• We want Adaptive Regret = o(T)

• In any interval of size (AR), algorithm converges to optimum
(on smaller interval we cannot guarantee anything)

• More general than “dynamic regret” and other notions

Adaptive Regret  = 

f1
f2 f3 fT

J
x1 x2 x3 xT

Efficient learning for changing environments
Hazan, Seshadhri ICML ‘09



Adaptive Regret for Control

sup
𝐼

෍

𝑡∈𝐼

𝑐𝑡 𝑥𝑡, 𝑢𝑡 − min
𝜋∈Π𝐷𝐹𝐶

෍

𝑡∈𝐼

𝑐𝑡 ෝ𝑥𝑡, 𝜋(෢𝑥𝑡) ≤ 𝐿 ≤ 𝑇

Adaptive Regret for Control of Time-Varying Dynamics 
Gradu, Hazan, Minasyan ‘20

Working
set

• Maintain a working set of log(T) GPC algorithms
• Merge their control according to an exponential weighting scheme
• Adaptation of FLH (follow-the-leading-history) method for OCO
• log(T) overhead in running time & memory

Magician
=GPC



Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO

• Setting

• Performance metric

• Methods

2. Extensions: 
unknown systems, partial observability, bandit feedback, black-box 
control, time-varying systems

3. Applications: 
adversarial noise design and controller verification, planning 



How it fits in: Nonstochastic Control
Control-based strategies are often modular.

Convex Policy Parametrization for Linear Control



Controller verification

How can we certify a controllers’ correct behavior?

→ Generate maximally adversarial online perturbation

Controller

Noise

Observed
performance

Generating Adversarial Disturbances for Controller Verification 
Ghai, Snyder, Majumdar, Hazan L4DC ‘21



Noise <-> control

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 +𝑤𝑡
𝑐𝑡 𝑥𝑡, 𝑢𝑡

Input time series 𝒖𝒕 Output time series 𝒙𝒕

𝒙𝒕

Symmetric!

Maximization vs. Min
Online Trust Region

Generating Adversarial Disturbances for Controller Verification 
Ghai, Snyder, Majumdar, Hazan L4DC ‘21



Experiments with airsim

Generating Adversarial Disturbances for Controller Verification 
Ghai, Snyder, Majumdar, Hazan L4DC ‘21







Data-driven Planning
Learn an (adaptive) policy

+ given an approximate model

+ subject to changing, unknown perturbations

+ in a handful of episodes

+Arises in real-world applications
+ Sandboxed setup for sim2real, meta-learning, policy transfer

Why?



Episode 1 of T

Learner has a model 𝑓(𝑥,𝑢)

Timestep 1 of H

Play action 𝑢ℎ
𝑥ℎ+1 = 𝑓(𝑥ℎ,𝑢ℎ) + 𝑤ℎ
Suffer 𝑐 𝑥ℎ, 𝑢ℎ

Episodic C𝑜𝑠𝑡𝑡 = σℎ 𝑐ℎ(𝑥ℎ,𝑢ℎ)

Problem Setting Compare: 
Iterative LQR > no perturbations
Iterative LQG > Gaussian perturbations
Model Predictive Control > One-shot
Iterative Learning Control > Same setup

(here)

State
Action

Unknown, Nonstationary 
Perturbations

(arbitrary, no dist. assumption)
(changes every step, every episode)



Objective: Planning Regret

Intra-episodic learning
Instance-optimal Adaptation

Inter-episodic learning
Best Overall Open-Loop Plan

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21



Planning Regret Bound
For time-varying linear dynamical system

Subject to arbitrary perturbation

An efficient gradient-based algorithm

Inter-episodic learning
Best Overall Open-Loop Plan

Intra-episodic learning
Instance-optimal Adaptation

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21



Experiment 1: Quadcopter in Wind

Impossible (Oracle) 
Baseline

Our Algorithm

Iterative Learning 
Control

No Adapation

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21



Experiment 2: Reacher w. Impulses

Impossible (Oracle) 
Baseline

Our Algorithm

Iterative Learning 
Control

No Adapation

A regret minimization approach to iterative learning control
Agarwal, Hazan, Majumdar, Singh ICML ‘21



Agenda

1. The basic paradigm of non-stochastic control: 
• Pre-tutorial on OCO

• Setting

• Performance metric

• Methods

2. Extensions: 
unknown systems, partial observability, bandit feedback, black-box 
control, time-varying systems

3. Applications: 
adversarial noise design and controller verification, planning 



Emerging theory of online non-stochastic control

1. Performance metric, motivation, setting

2. Gradient-based regret-minimizing controllers (GPC)

3. Controlling unknown systems, partially observed & unknown

4. Adaptive regret for time varying systems

5. Black-box control 

6. Applications: Controller verification, perturbation-resilient planning

7. More info on OCO/regret/adaptive-regret: https://ocobook.cs.princeton.edu/
More info on NSC: https://sites.google.com/view/nsc-tutorial/home
Code: https://www.deluca.fyi/

Summary

https://ocobook.cs.princeton.edu/
https://sites.google.com/view/nsc-tutorial/home
https://www.deluca.fyi/

