Self-Improved Retrosynthetic Planning

Junsu Kim¹ (presenter), Sungsoo Ahn², Hankook Lee¹, and Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology (KAIST)

²Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

Background: Retrosynthetic Planning

- Goal: finding a series of chemically valid reactions starting from target molecule until reaching the building block molecules.
 - In a backward and recursive manner.
 - Crucial in drug discovery and material design.

Background: Retrosynthetic Planning

- The main challenge of retrosynthetic planning is twofold:
 - (a) Finding an accurate single-step retrosynthesis model.
 - Why? To guarantee chemical validity of searched pathways.

- (b) Designing an efficient search algorithm.
 - Why? The search space is huge due to the vast number of possible chemical reactions.

Background: Retrosynthetic Planning

- Most of existing works are two-stage framework.
 - Stage 1. Train single-step retrosynthesis model parameterized by deep neural networks (DNN).

Stage 2. Run search algorithms with the trained DNN-based single-step retrosynthesis model.

- The existing two-stage frameworks are suboptimal.
 - DNN-based single-step retrosynthesis model only considers the requirement (a), not (b).
 - (a) Reaction pathways should be represented by real-world reactions.
 - (b) Reaction pathways should be executable using "building block" molecules.
- Motivated by this, we propose an end-to-end framework.
 - Directly training the DNNs towards generating reaction pathways with both properties (a) and (b).

Key idea: self-improving procedure that trains backward reaction model
(i.e., single-step retrosynthesis model) to imitate successful pathways
found by itself.

• Step A. Gather reactions from reaction pathways found by search algorithm combined with the backward reaction model.

- Step B. Discard unrealistic reactions using a reference backward reaction model.
 - Reference backward reaction model determines whether a reaction resembles real-world reactions.

• Step C. Augment reactions via a *forward reaction model* (i.e., single-step synthesis model).

• Step D. Train the backward reaction model to imitate the generated reactions.

 Step A. Gather reactions from reaction pathways found by search algorithm combined with the backward reaction model.

- Step B. Discard unrealistic reactions using a reference backward reaction model.
 - Reference backward reaction model determines whether a reaction resembles real-world reactions.

- Step C. Augment reactions via a *forward reaction model* (i.e., single-step synthesis model).
 - Based on the knowledge; there can be multiple products resulting from the same reactant-set.

• Step D. Train the backward reaction model by maximizing the log-likelihood of the reactions in $\mathcal{C} \cup \mathcal{C}'$.

Experiments

- Our framework achieves the state-of-the-art performance.
 - Ours improves success rate from 86.84% to 96.32%.
 - Search time, length and cost of searched pathways are improved.
 - Backward reaction model maintains its reliability.

	REACTIONS		REACTION PATHWAYS				
ALGORITHM	Тор-1 ↑	Тор-10↑	Succ. rate \uparrow $(N=50)$	Succ. rate \uparrow $(N = 500)$	LENGTH↓	Тіме↓	Cost↓
GREEDY DFS†	-	s. .		22.63	-	388.15	-
$MCTS^{\dagger}$	-	-	-	33.68	-	370.51	-
DFPN-E [†]	-	-	-	55.26	-	279.67	-
RETRO*-0	44.53	72.71	27.37	79.47	11.21	208.09	19.40
Retro*-0 + ours	44.03	73.14	57.37	96.32	7.69	96.22	11.66
	(-1.12%)	(+0.59%)	(+109.62%)	(+21.20%)	(-31.40%)	(-53.76%)	(-39.90%)
RETRO*	44.53	72.71	44.21	86.84	9.71	157.11	15.33
RETRO* + OURS	44.03	73.15	57.89	91.05	8.74	100.15	15.23
	(-1.12%)	(+0.61%)	(+30.94%)	(+4.85%)	(-9.99%)	(-36.25%)	(-0.65%)

Conclusion

 We propose an end-to-end framework based on self-improved model adaptation to improve retrosynthetic planning.

We also propose an additional reaction augmentation scheme.

 Our work reduces the gap between supervised learning of single-step retrosynthesis models and the goal of retrosynthetic planning.