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Background: Retrosynthetic Planning

* Goal: finding a series of chemically valid reactions starting from target
molecule until reaching the building block molecules.

* |nabackward and recursive manner.

* Crucial in drug discovery and material design.
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Background: Retrosynthetic Planning

* The main challenge of retrosynthetic planning is twofold:

* (a) Finding an accurate single-step retrosynthesis model.

* Why? To guarantee chemical validity of searched pathways.

* (b) Designing an efficient search algorithm.

* Why? The search space is huge due to the vast number of possible chemical reactions.



Background: Retrosynthetic Planning

* Most of existing works are two-stage framework.

* Stage 1. Train single-step retrosynthesis model parameterized by deep neural networks (DNN).
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* Stage 2. Run search algorithms with the trained DNN-based single-step retrosynthesis model.
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Our approach

* The existing two-stage frameworks are suboptimal.

* DNN-based single-step retrosynthesis model only considers the requirement (a), not (b).

* (a) Reaction pathways should be represented by real-world reactions.

* (b) Reaction pathways should be executable using “building block” molecules.

* Motivated by this, we propose an end-to-end framework.

 Directly training the DNNs towards generating reaction pathways with both properties (a) and (b).



Our approach

* Key idea: self-improving procedure that trains backward reaction model
(i.e., single-step retrosynthesis model) to imitate successful pathways
found by itself.



Our approach

» Step A. Gather reactions from reaction pathways found by search
algorithm combined with the backward reaction model.
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Our approach

* Step B. Discard unrealistic reactions using a reference backward reaction
model.

* Reference backward reaction model determines whether a reaction resembles real-world reactions.
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Our approach

 Step C. Augment reactions via a forward reaction model (i.e., single-step
synthesis model).
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Our approach

* Step D. Train the backward reaction model to imitate the generated

reactions.
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Our approach (in detail)

» Step A. Gather reactions from reaction pathways found by search
algorithm combined with the backward reaction model.

Detailed description of Step A
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Our approach (in detail)

* Step B. Discard unrealistic reactions using a reference backward reaction
model.

* Reference backward reaction model determines whether a reaction resembles real-world reactions.
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Our approach (in detail)

 Step C. Augment reactions via a forward reaction model (i.e., single-step
synthesis model).

» Based on the knowledge; there can be multiple products resulting from the same reactant-set.
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Our approach (in detail)

* Step D. Train the backward reaction model by maximizing the log-
likelihood of the reactionsin C U’
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Experiments

* Our framework achieves the state-of-the-art performance.

* Qurs improves success rate from 86.84% to 96.32%.
* Search time, length and cost of searched pathways are improved.

* Backward reaction model maintains its reliability.

REACTIONS REACTION PATHWAYS
Succ. RATET SucC. RATE T
ALGORITHM Top-11T Tor-107 (N = 50) (N = 500) LENGTH | TIME | CasTl
GREEDY DFST - - - 22.63 - 388.15 -
MCTST - - - 33.68 - 370.51 -
DFPN-Ef - - - 39:26 - 279.67 -
RETRO*-0 44.53 7291 2737 79.47 | B | 208.09 19.40
RETRO*-0 + OURS 44.03 73.14 5737 96.32 7.69 96.22 11.66
(-1.12%) (+0.59%) (+109.62%) (+21.20%) (-31.40%) (-53.76%) (-39.90%)

RETRO* 44.53 2.1 4421 86.84 9.71 15:7:11 15:33
RETRO* + OURS 44.03 73.15 57.89 91.05 8.74 100.15 15.23

(-1.12%) (+0.61%) (+30.94%) (+4.85%) (-9.99%) (-36.25%)

(-0.65%)




Conclusion

* We propose an end-to-end framework based on self-improved model
adaptation to improve retrosynthetic planning.

* We also propose an additional reaction augmentation scheme.

* Ourwork reduces the gap between supervised learning of single-step
retrosynthesis models and the goal of retrosynthetic planning.



