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Motivating Example: Nuclear Fusion Simulation
• Suppose we have  parameters 

and we wish to identify the best one.
n = 4

2

Parameter 1
Parameter 2
Parameter 3
Parameter 4

Possible parameters:

Goal: identify best one



Motivating Example: Nuclear Fusion Simulation
• Could try each parameters once, but 

simulation is stochastic. 

• Must try repeatedly to be sure we 
found the best parameters.
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Motivating Example: Nuclear Fusion Simulation
We could: 

• Try all parameters 100 times and pick 
the one that is best on average. 

• Try all 10 times, pick best 2, try these 
ones 90 times, then pick the best one.
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Motivating Example: Nuclear Fusion Simulation
Suppose we have a set of resources to run simulations. 

What is the best way to allocate resources to simulations?
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6 GPUs



Motivating Example: Nuclear Fusion Simulation
Assigning 1 GPU to a simulation will cause it to take 6 hours. 

Assigning 6 GPUs to a simulation will cause it to take 2 hours.
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6 GPUs



Motivating Example: Nuclear Fusion Simulation
• Algorithms must consider 

• Resources available 

• Scaling of program vs. resources used 

• Typically sublinear due to 
communication, synchronization, serial 
components 

• Tradeoff: information accumulation vs. 
throughput
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How do we best allocate resources?
Assign a single GPU to each simulation. We can run 6 simulations at a time. 

Suppose with 1 GPU, a simulation takes 6 hours.
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How do we best allocate resources?
Assign all 6 GPUs to each simulation. We can run 1 simulations at a time. 

Suppose with 6 GPUs, a simulation takes 2 hours to finish. (Not 1/6th of before).
Parameter 1
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How do we best allocate resources?
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Parameter 1

Parameter 1

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 4

Completely parallel: 

• 6 hours/batch 

• 1 simulations/hour

Completely sequential: 

• 2 hours/batch 

• 0.5 simulations/hour



How do we best allocate resources?
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Completely parallel: 

• 6 hours/batch 

• 1 simulations/hour

Completely sequential: 

• 2 hours/batch 

• 0.5 simulations/hour

More runs, 
higher throughput

More resources/run, 
faster results

Parameter 1

Parameter 1

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 4



How do we best allocate resources?
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Parameter 1 Parameter 1
Parameter 2

Maybe something else?

Parameter 3



We will model this as a novel bandit exploration problem.
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Real World Problem Bandit Problem

Simulation parameter Arm

Simulation, job, run Arm pull

GPUs, cores, instances, nodes Resources



This paper contributes:
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• Novel setting for best arm identification in multi-armed bandits with time and resource allocation 

• A -PAC algorithm for the fixed confidence setting  

• Upper bound on runtime 

• Matching lower bound 

• Synthetic experiments 

• An algorithm in the fixed deadline setting 

• Upper bound on error probability 

• Synthetic experiments

δ
Covered in this talk.

Covered in the paper, 
but not in this talk.



Motivation 
Problem Setup 
Fixed Confidence Setting: Results
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Best Arm Identification (BAI): Prior Work
• Sequential BAI: 

• Karnin, Zohar, Tomer Koren, and Oren Somekh. "Almost optimal exploration in multi-armed bandits." 
In International Conference on Machine Learning, pp. 1238-1246. 2013. 

• Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier. "On the complexity of best-arm identification in 
multi-armed bandit models." The Journal of Machine Learning Research 17, no. 1 (2016): 1-42.Parallel 
setting: 

• Parallel BAI: 

• Jun, Kwang-Sung, Kevin G. Jamieson, Robert D. Nowak, and Xiaojin Zhu. “Top Arm Identification in 
Multi-Armed Bandits with Batch Arm Pulls.” In AISTATS pp.139-148, 2016. 

• Grover, Aditya, Todor Markov, Peter Attia, Norman Jin, Nicholas Perkins, Bryan Cheong, Michael Chen, 
Zi Yang, Stephen Harris, William Chueh, Stefano Ermon. Best arm identification in multi-armed bandits 
with Delayed Feedback. In AISTATS, pp. 833-842. PLMR, 2018. 

• This paper: 

• Augment prior settings by adding time and resource allocation to BAI
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Best Arm Identification
•  arms 

• Samples independent, bounded in [0, 1] 

• Arm i has mean  

• WLOG: assume  

• Goal: identify the arm with the highest mean

n

μi

μ1 > μ2 ≥ ⋯ ≥ μn
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Best Arm Identification
Define arm gap  for , and Δi = μ1 − μi i > 1 Δ1 = μ1 − μ2
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Harder problem Easier problem



Best Arm Identification (BAI): Settings

Fixed confidence setting: 

• Given: error probability tolerance  

• Goal: identify best arm within error 
tolerance, minimize number of pulls 

Fixed budget setting: 

• Given: budget B of arm pulls 

• Goal: identify best arm within B 
pulls, minimize error probability 

δ

δ
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Fixed confidence setting: 

• Given: error probability tolerance  

• Goal: identify best arm within error 
tolerance, minimize time 

Fixed deadline setting: 

• Given: time deadline T 

• Goal: identify best arm within T 
time, minimize error probability 

δ

δ

Prior work This paper



Best Arm Identification (BAI): Settings

Fixed confidence setting: 

• Given: error probability tolerance  

• Goal: identify best arm within error 
tolerance, minimize number of pulls 

Fixed budget setting: 

• Given: budget B of arm pulls 

• Goal: identify best arm within B 
pulls, minimize error probability 

δ

δ
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Fixed confidence setting: 

• Given: error probability tolerance  

• Goal: identify best arm within error 
tolerance, minimize time 

Fixed deadline setting: 

• Given: time deadline T 

• Goal: identify best arm within T 
time, minimize error probability 

δ

δ

Prior work This paper



New Idea: allocate a fraction of resources to each pull.

: scaling function, known, indicates how resource allocation affects pull time 

• e.g. allocating 2 GPUs to a job vs. 1 causes it to run 1.5x faster

λ
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How do we model time taken per pull?
Should depend on the number of resources allocated to the pull. 

Define scaling function  

• If fraction  of resources allocated to a pull, it takes  time.

λ

α ∈ [0,1] λ(1/α)
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Scaling Function Properties
• If fraction  of resources allocated to a pull, it takes  time. 

• Suppose a batch of  pulls are executed in parallel with  resources each. 

• Batch takes  time to finish.

α ∈ [0,1] λ(1/α)

b 1/b

λ(b)

Execute 4 jobs with 
1/4 resources each

 time elapsesλ (4)
Results arrive

Resources
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Scaling Function Properties
• If fraction  of resources allocated to a pull, it takes  time. 

• Suppose a batch of  pulls by dividing  resources evenly. 

• Batch takes  time to finish.

α ∈ [0,1] λ(1/α)

b η ∈ [0,1]

λ(b/η)

Execute 2 jobs with 
1/4 resources each

 time elapsesλ (4)
Results arrive

Resources
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Core Assumption on Scaling Function λ
• Diminishing returns (sublinear scaling): allocating more resources doesn’t 

proportionally speed up sampling time 

• e.g. allocating 2 GPUs to a job vs. 1 causes it to run 1.5x faster not >2x
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Linear vs. Sublinear Scaling Function λ



A batch of 100 jobs takes 100 hours.


A batch of 1 job takes 1 hour. (100x speedup)


λ(b) = b
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A batch of 100 jobs takes 10 hours.


A batch of 1 job takes 1 hour. (10x speedup)


λ(b) = b



Implications
Need to trade off between information accumulation and throughput 

Example: 

• Let  

• Pulling arms sequentially: 

Throughput: 1 pull/hour 

Sampling time: 1 hour 

• Pull resources with 1/16 resources each (16 at a time) 

Throughput: 4 pulls/hour 

Sampling time: 4 hours

λ(b) = b
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Efficient algorithms must adaptively balance parallelism.

Algorithms must adaptively assess the difficulty of the problem.
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Motivation 
Problem Setup 
Fixed Confidence Setting Results 
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Fixed Confidence Setting
• Identify best arm with prob , minimize time T 

• Algorithm: Adaptive-Parallel-Racing (APR) 

• Maintain confidence bounds for each arm 

• eliminate when confidence bounds disjoint from top confidence bound 

• Adaptively increase parallelism during execution

≥ 1 − δ
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APR maintains confidence bounds for each arm.
Eliminate when confidence bounds disjoint from top confidence bound.

31
Eliminate 

these arms

Elimination 
threshold



APR adaptively increases parallelism for surviving arms.
Longer surviving, more samples required.

Easy to eliminate

Increase 
throughput 
over time

Hard to distinguish

32



Oracle Dynamic Program Sketch
• Suppose we can eliminate arm  after pulling all arms  times 

• Prior lower bounds suggest that  

• Suppose we knew the  values but not the arms they correspond to. 

• How do we optimally schedule batches of arm pulls to minimize time?

i ≥ 2 Ni

Ni ≈
1

Δ2
i

Ni
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Oracle Dynamic Program Sketch
Example:  arms 

• To eliminate arm 3, we need 100 pulls for each arm. 

• To eliminate arm 2, we need 1000 pulls for each surviving arm. 

• Option 1: 

• Pull all arms 100 times, eliminate arm 3, then pull arms 1 and 2, 900 times. 

• Option 2: 

• Pull all arms 1000 times, eliminate arms 2 and 3. 

• Optimal choice depends on scaling function.

n = 3
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Oracle Dynamic Program Sketch
• General  case: 

• Dependent on  values and scaling  

• Define a dynamic program  that finds the optimal time  

• Lower bound: 

• Show we cannot beat the DP solution by much 

• Upper bound 

• Show APR gets close to the DP solution

n, Ni

Ni λ

𝒯 ({Ni}i∈[n]) T⋆
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Theorem 2: Fixed Confidence Lower Bound
• Show no -PAC algorithm cannot beat the DP solution  by much 

• Uses a change of measure argument as in Kaufmann et al. 2016, and reduces 
BAI into the scheduling DP. 

• Result: for any -PAC algorithm, expected time 

δ T⋆

δ 𝔼T ∈ Ω̃ (T⋆)

Emilie Kaufmann, Olivier Cappé, Aurélien Garivier. On the Complexity of Best Arm Identification in Multi-Armed Bandit Models. JMLR 2016.
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Theorem 1: Fixed Confidence Upper Bound
• Show APR cannot lose to the DP solution  by much. 

• Must show that we neither 

• Take too long to “ramp up” parallelism. 

• “Overshoot” by over-pulling arms. 

• Proof shows that w.p. , neither of these events can occur often. 

• W.p. , APR identifies the best arm in time , where  
ignores sub polynomial terms.

T⋆

≥ 1 − δ

≥ 1 − δ T ∈ Õ (T⋆) Õ
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Comparison of Theoretical Results
• Lower bound: for any -PAC algorithm, expected time . 

• Upper bound: APR is -PAC, and has time  w.p. at least .

δ 𝔼T ∈ Ω̃ (T⋆)

δ T ∈ Õ (T⋆) 1 − δ
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Experiments
APR: Red 

Baselines: have fixed batch size, each good on specific problems

Poor scaling λ(b) = b0.1
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Experiments
APR: Red 

Baselines: have fixed batch size, each good on specific problems

Good scaling λ(b) = b0.9
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APR consistently matches the best baselines for each scaling function
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Dirty Laundry and Future Work
• In fixed confidence setting: lower bound in expectation, upper bound w.h.p. 

• Lower bounds for fixed deadline setting 

• Real-world experiments 

• Core assumption: each arm has same, known scaling function  

• Elastic resource that can grow and shrink: 

• https://arxiv.org/pdf/2106.03221.pdf 

λi
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https://arxiv.org/pdf/2106.03221.pdf


Summary
• Novel problem for parallel best arm identification 

• Considers time and parallel resource scaling 

• Matching upper and lower bounds in the fixed confidence setting 

• Upper bound in the fixed deadline setting 

• Contact: bthananjeyan@berkeley.edu 
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