. D75
drise (%@BAIR

UC Berkeley

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Resource Allocation in Multi-armed
Bandit Exploration: Overcoming Nonlinear
Scaling with Adaptive Parallelism

Sequential Algorithm Fixed Parallel Algorithm Adaptive Parallel Algorithm
Arm 3 elimin d m Ima ed Arm 3 eliminated

Brijen Thananjeyan, Kirthevasan Kandasamy, lon Stoica, Michael I. Jordan, Ken Goldberg, Joseph E. Gonzalez

1

Motivating Example: Nuclear Fusion Simulation

e Suppose we have n = 4 parameters ~ $40% N it [G Bl
and we wish 1o identity the best one. | A 8 S ISR g ¢

Possible parameters: ool e e gy
Parameter 1 RN B AV
Parameter 2 W Neesss - (B il S
Parameter 3 SR 74 @ e, RSN

- X ;,_\; . : :, i‘ g 2§ A \ ' ‘
Parameter 4 S b/) arg 0¥ ,

Goal: identify best one

Fusion Simulation

Motivating Example: Nuclear

e Could try each parameters once, but T
simulation is stochastic. T A A

e Must try repeatedly to be sure we @ T
found the best parameters. 07" | T

VP
~ . : : P 1:-

9\ AF

ll PR o, \
= o y;
.\ Cre . —_ s A:‘ > 8 A 77
Y ¢ ’ \i.“
, " :
: L : ¢ 2 \ ¥
; - ~X / ! ¥
\ 1 > \
\ ¥ - | | e N
\ ! — ': » 4 ' :
& - : ,
" 7 ‘ ® S L ¢ y
\ 2 é‘ ‘/ = ‘
r = /
AR = ' ! ;)

Motivating Example: Nuclear Fusion Simulation
We could:

e [ry all parameters 100 times and pick e
the one that is best on average. g L

e [ry all 10 times, pick best 2, try these ,
ones 90 times, then pick the best one.

Motivating Example: Nuclear Fusion Simulation

Suppose we have a set of resources to run simulations.

What is the best way to allocate resources to simulations®?

6 GPUSs

Motivating Example: Nuclear Fusion Simulation

Assigning 1 GPU to a simulation will cause it to take 6 hours.

Assigning 6 GPUs to a simulation will cause it to take 2 hours.

6 GPUSs

Motivating Example: Nuclear Fusion Simulation

® Algorithms must consider

Amdahl's Law

® Resources avallable

e Scaling of program vs. resources used

Speedup

e [ypically sublinear due to
communication, synchronization, serial
components

® [radeoff: Information accumulation vs.
throughput

Number of Processors

0% parallel portion
60% parallel portion
70% parallel portion
80% parallel portion
90% parallel portion

O
S
+ N
o o :
N - .
O S & o
c ._ﬁ”..u d77" | bk -
o 2 - S
S5 Z) |
o m ey |
N ©
QD S
S o
Q ¢
S
© = <
& o 8
® . S
— 5 X 8 - p
|_ﬁ|a.. a E2ana o ._%
© = P v S
njd & S &
P m s =L R
5 h
Q = ©
S O =
(5 AR
‘® Oe
o o TE
S £ -
S = ¢
O mnuu 2 bbb | m
T & S = | £
A ﬁ\UV = an-‘_mwn;uu}}; |
.mmmﬂ, ‘ = |

How do we best allocate resources?

Assign all 6 GPUs to each simulation. We can run 1 simulations at a time.

Suppose with 6 GPUs, a simulation takes 2 hours to finish. (Not 1/6th of before).
Parameter 1

9

Ia

lations/hour
Parameter 1

IMu

IS
S

5S

Completely sequent
® 2 hours/batch

e ()

Parameter 4

Parameter 2
Parameter 3

lations/hour

mu

How do we best allocate resources
Parameter 4

Completely parallel
Parameter 1

® O hours/batch

® 1S
Parameter 1

10

S
S =
DO =2
O
wm
30
A
T
O ®
Of
=
9- L O
N = 2
4+ O —
O & <= 5
- D 5
c w C - =
= 0 o2 O S
=5 ¢ 2 T ol
O ~V
O F v
+— < m
N © S 5
o N O
e O ® ®
qv
& ~
o 3 < <
— £ = o
N O m m
qv C 5 = =
o> O = S
. - a S
T O 5 al
7 oL
O -
i -
O =
= o "
QD 2 .
re —
2 T _ 2 m
© L /Dﬁm Dnuu
O 8 = C
Q. » O
o =
D N ~V
-+ A - D)
w D D T _
o m m% .
) =
O £ S L :
H Q JIW S
O ® o O ks

How do we best allocate resources?

Maybe something else”?

Parameter 3

Parameter 2

Parameter 1

Parameter 1

e

B o i et 1

- - he

[N S

==y ﬁf};..}%;: Ak

= 4 L mm/w\-

12

We will model this as a novel bandit exploration problem.

Real World Problem Bandit Problem
Simulation parameter Arm
Simulation, job, run Arm pull
GPUs, cores, instances, nodes Resources

13

This paper contributes:

® Novel setting for best arm identification in multi-armed bandits with time and resource allocation

e A 0-PAC algorithm for the fixed confidence setting
e Upper bound on runtime Covered in this talk.
e Matching lower bound
® Synthetic experiments

® An algorithm in the fixed deadline setting

e Upper bound on error probability govered iIr rfhe p‘iper,
ut not In this talk.

® Synthetic experiments

14

Problem Setup

Best Arm Identification (BAIl): Prior Work

® Sequential BAI:

e Karnin, Zohar, Tomer Koren, and Oren Somekh. "Almost optimal exploration in multi-armed bandits."
In International Conference on Machine Learning, pp. 1238-1246. 2013.

o Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier. "On the complexity of best-arm identification in
multi-armed bandit models." The Journal of Machine Learning Research 17, no. 1 (2016): 1-42.Parallel
setting:

® Parallel BAI;

e Jun, Kwang-Sung, Kevin G. Jamieson, Robert D. Nowak, and Xiaojin Zhu. “Top Arm ldentification in
Multi-Armed Bandits with Batch Arm Pulls.” In AISTATS pp.139-148, 2016.

e (Grover, Aditya, Todor Markov, Peter Attia, Norman Jin, Nicholas Perkins, Bryan Cheong, Michael Chen,
/1 Yang, Stephen Harris, William Chueh, Stefano Ermon. Best arm identification in multi-armed bandits
with Delayed Feedback. In AISTATS, pp. 833-842. PLMR, 2018.

* This paper:

® Augment prior settings by adding time and resource allocation to BAI
16

Best Arm ldentification

® 71 AlMms

e Samples independent, bounded in [0, 1}

® Arm | has mean Y;

o WLOG: assume p; > iy = =+ 2> H,

 Goal: identify the arm with the highest mean

17

Arm Means 1

0

Best Arm ldentification

Definearm gap A, = p; — p;fori > 1, and Ay = puy — u,

Harder problem —asier problem

1
1

Ug

Arm Means
Arm Means
=== === ===

0
0

18

Best Arm Identification (BAI): Settings

Prior work This paper
Fixed confidence setting: Fixed confidence setting:
e Given: error probability tolerance o e Given: error probability tolerance o
e Goal: identify best arm within error e Goal: identifty best arm within error

tolerance, minimize number of pulls tolerance, minimize time

19

Best Arm Identification (BAI): Settings

Prior work This paper
Fixed budget setting: Fixed deadline setting:
e Given: budget B of arm pulls e Given: time deadline T
e Goal: identify best arm within B e Goal: identify best arm within T

pulls, minimize error probability o time, minimize error probability o

20

New ldea: allocate a fraction of resources to each pull.

A: scaling function, known, indicates how resource allocation affects pull time

® c.g. allocating 2 GPUSs to a job vs. 1 causes it to run 1.5x faster

21

How do we model time taken per pull?

Should depend on the number of resources allocated to the pull.
Define scaling function A

e |f fraction a € [0,1] of resources allocated to a pull, it takes A(1/a) time.

22

Scaling Function Properties

e |f fraction a € [0,1] of resources allocated to a pull, it takes A(1/a) time.
e Suppose a batch of b pulls are executed in parallel with 1/b resources each.

e Batch takes A(b) time to finish.

Results arrive

Resources cxecute 4 jobs with A (4) time elapses

1/4 resources each

Scaling Function Properties

e |f fraction a € [0,1] of resources allocated to a pull, it takes A(1/a) time.
e Suppose a batch of b pulls by dividing n € [0,1] resources evenly.

e Batch takes A(b/n) time to finish.

| | Results arrive
ResSOUICes Execute 2 jobs with A (4) time elapses

1/4 resources each

Core Assumption on Scaling Function A

Diminishing returns (sublinear scaling): allocating more resources doesn’t
proportionally speed up sampling time

® c.g. allocating 2 GPUSs to a job vs. 1 causes it to run 1.5x faster not >2x

25

Linear vs. Sublinear Scaling Function A

A(b) = b
A batch of 100 jobs takes 100 hours.

A batch of 1 jOb takes 1 hour. (100x speedup)

batch size

20

Ab) =/b
A batch of 100 jobs takes 10 hours.

A batch of 1 jOb takes 1 hour. (10x speedup)

Implications

Need to trade off between information accumulation and throughput

Example' Sequential Distribution Algorithm
. Arm 1
Let =
* e /I(b) \/Z Arm 2
® Pulling arms sequentially:
Arm 3
Throughput: 1 pull/hour Arm 3 eliminated
Sampling time: 1 hour fime
® Pull resources with 1/16 resources each (16 at a time) Fixed Parallelization Distribution Algorithm
Arm 1
Throughput: 4 pulls/hour
. . Arm 2
Sampling time: 4 hours
Arm 3

27

Efficient algorithms must adaptively balance parallelism.

Algorithms must adaptively assess the difficulty of the problem.

Adaptive Parallel Algorithm

Arm 1

Arm 2

Arm 3

Arm 3 eliminated

Time
28

Fixed Confidence Setting Results

Fixed Confidence Setting

e |dentify best arm with prob > 1 — 0, minimize time T
e Algorithm: Adaptive-Parallel-Racing (APR)
e Maintain confidence bounds for each arm
® climinate when confidence bounds disjoint from top confidence bounad

e Adaptively increase parallelism during execution

Adaptive Parallel Algorithm

Arm 1

Arm 2

Arm 3

Arm 3 eliminated

Time

30

APR maintains confidence bounds for each arm.

Eliminate when confidence bounds disjoint from top confidence bound.

N
-
> . L
s | T Elimination
- — threshold
< - N
T . _
N> = i
] T
-
LL]
@) —— —— —— ——

H1 K H3 My

Eliminate

31 these arms

APR adaptively increases parallelism for surviving arms.

Longer surviving, more samples required.

Adaptive Parallel Algorithm Hard to distinguish
Arm 1
Increase Arrr 5
throughput =
over time
Arm 3
Arm 3 eliminated —asy to eliminate
>
Time

32

Oracle Dynamic Program Sketch

e Suppose we can eliminate arm 1 > 2 after pulling all arms NV, times

|
o Prior lower bounds suggest that V; & E
l

e Suppose we knew the /V; values but not the arms they correspond to.

« How do we optimally schedule batches of arm pulls to minimize time?

33

Oracle Dynamic Program Sketch

Example: n = 3 arms
® [0 eliminate arm 3, we need 100 pulls for each arm.
® [0 eliminate arm 2, we need 1000 pulls for each surviving arm.

e Option 1:

e Pull all arms 100 times, eliminate arm 3, then pull arms 1 and 2, 900 times.

e Option 2:

e Pull all arms 1000 times, eliminate arms 2 and 3.

e Optimal choice depends on scaling function.

34

Oracle Dynamic Program Sketch

e General n, N, case:
e Dependent on NV, values and scaling A

e Define a dynamic program I~ ({Ni}ie[n]) that finds the optimal time T*

® | ower bound:

® Show we cannot beat the DP solution by much

e Upper bound

e Show APR gets close to the DP solution

35

Theorem 2: Fixed Confidence Lower Bound

e Show no §-PAC algorithm cannot beat the DP solution 7% by much

® Uses a change of measure argument as in Kaufmann et al. 2016, and reduces
BAIl Into the scheduling DFP.

e Result: for any 0-PAC algorithm, expected time ET & Q (T*)

Emilie Kaufmann, Olivier Cappe, Aurélien Garivier. On the Complexity of Best Arm Identification in Multi-Armed Bandit Models. JMLR 20186.
36

Theorem 1: Fixed Confidence Upper Bound

e Show APR cannot lose to the DP solution 7* by much.
® Must show that we neither
e [ake too long to “ramp up” parallelism.

e “Overshoot” by over-pulling arms.
e Proof shows that w.p. > 1 — 9, neither of these events can occur often.

e W.p. > 1— 8, APR identifies the best arm in time T € O (T™*), where O
ignores sub polynomial terms.

37

Comparison of Theoretical Results

e Lower bound: for any 0-PAC algorithm, expected time ET & Q (T*).

e Upper bound: APR is 8-PAC, and has time T € O (T*) w.p. at least 1 — 0.

38

Experiments
APR: Red

Baselines: have fixed batch size, each good on specific problems

Poor scaling A(b) = bY!

Time

10°

Runtime vs. Smallest Arm Gap, g=0.1

i — Batch Racing (1)

104_; — Batch Racing (1000)

{ —— Batch Racing (10000)
| — APR

—
-4
-4
4
4
4
R
R
.

102

Batch Racing (10)

102 102 10° 10°

Experiments
APR: Red

Baselines: have fixed batch size, each good on specific problems

Runtime vs. Smallest Arm Gap, g=0.9

5
e | —— Batch Racing (1)
I Batch Racing (10) /
| —— Batch Racing (1000) |
—— Batch Racing (10000)
0.9 109 AR
Good scaling A(b) = b™ 0
= f
103' | | ‘_-'
1024 ©
101! 102 103 104
A5?

APR consistently matches the best baselines for each scaling function

Time

Runtime vs. Smallest Arm Gap, g=0.1

107 -

104 -

Batch Racing (1)
Batch Racing (10)
Batch Racing (1000)
Batch Racing (10000)
APR

‘N’/Mﬂ

104 10° 10°

Time

41

103 -

Runtime vs. Smallest Arm Gap, g =0.9

Batch Racing (1)
Batch Racing (10)
Batch Racing (1000)
Batch Racing (10000)
APR

102 -

103 10°

Dirty Laundry and Future Work

® |n fixed confidence setting: lower bound In expectation, upper bound w.N.p.
® | ower bounds for fixed deadline setting

e Real-world experiments

e Core assumption: each arm has same, known scaling function 4,

® Elastic resource that can grow and shrink:

® Nhitps://arxiv.org/pdf/2106.03221.pdf

42

https://arxiv.org/pdf/2106.03221.pdf

Summary

e Novel problem for parallel best arm identification

e Considers time and parallel resource scaling

e \atching upper and lower bounds in the fixed confidence setting

Adaptive Parallel Algorithm

e Upper bound In the fixed deadline setting

e Contact: bthananjeyan@berkeley.edu

Arm 3 eliminated

Time

drise

UC Berkeley 43
BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

mailto:bthananjeyan@berkeley.edu

