Classification with Rejection Based on Cost-sensitive Classification

Nontawat Charoenphakdee^{1,2}, Zhenghang Cui^{1,2}, Yivan Zhang^{1,2}, Masashi Sugiyama^{2,1}

The University of Tokyo¹, RIKEN AIP²

ICML2021

Mistake in predictions can be (very) harmful

Always answering is **prone to misclassification**. Saying "I don't know" can reduce misclassification.

Mistake in predictions can be (very) harmful

Always answering is **prone to misclassification**. Saying "I don't know" can <u>reduce misclassification</u>.

Warmup: binary classification

Given: Training input-output pairs:

$$\{\boldsymbol{x}_i,y_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x},y)$$

• Goal: Find g that minimizes the expected error:

$$R^{\ell_{0-1}}(g) = \underset{(\boldsymbol{x},y) \sim p(\boldsymbol{x},y)}{\mathbb{E}} \left[\ell_{0-1}(yg(\boldsymbol{x}))\right]$$

 $y \in \{-1, 1\}$: Label

 $g\colon \mathbb{R}^d o \mathbb{R}:$ Prediction function

 $oldsymbol{x} \in \mathbb{R}^d$: Feature vector

 $\ell \colon \mathbb{R} \to \mathbb{R}$: Margin loss function

z = yg(x) : Margin

No access to distribution: cannot minimize the expected error directly.

• Instead, we minimize the empirical error (Vapnik, 1998):

$$\hat{R}^{\ell_{0-1}}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0-1} (y_i g(\boldsymbol{x}_i))$$

Zero-one loss and its surrogates

Zero-one loss

Surrogate losses

Minimizing $\hat{R}^{\ell_{0-1}}$ is NP-hard even for simple model.

(Ben-david+, 2003; Feldman+, 2012)

Surrogate losses that are easier to minimize are used in practice.

Classification-calibration ensures that minimizing R^ℓ yields good g for $R^{\ell_{0-1}}$

(Zhang, 2004; Bartlett+, 2006)

But zero-one loss does not concern rejection...

From zero-one loss to zero-one-c loss

(Chow 1957, 1970)

Define a rejection cost $c \in (0, 0.5]$

Zero-one-c loss

$$g \colon \mathbb{R}^d \to \mathbb{R}$$
 : Prediction function $r \colon \mathbb{R}^d \to \{0,1\}$: Rejection function

$$\ell_{0\text{-}1\text{-}c}(y, r(\boldsymbol{x}), g(\boldsymbol{x})) = \begin{cases} c & \text{if } r(\boldsymbol{x}) = 0\\ \ell_{0\text{-}1}(yg(\boldsymbol{x})) & \text{otherwise} \end{cases}$$

Rejection comes with rejection penalty (less than misclassification penalty).

A classifier has an incentive to prefer rejection over misclassification

How to solve this problem?

Confidence-based approach

(Chow+ 1957, 1970; Yuan+, JMLR2010; Ni+, NeurlPS2019)

Knowing p(y|x) is sufficient

$$g^*(m{x}) = p(y=1|m{x}) - rac{1}{2} \quad egin{array}{l} g\colon \mathbb{R}^d o \mathbb{R} &: ext{Prediction function} \ r\colon \mathbb{R}^d o \{0,1\} &: ext{Rejection function} \ r^*(m{x}) = \mathbbm{1}_{[\max_y p(y|m{x}) - (1-c)]} \ & (ext{Chow 1957, 1970}) \end{array}$$

Pros: Straightforward to use in the multi-class case.

Cons: However, in general, surrogate losses must be able to estimate $p(y|m{x})$

Strictly stronger requirement than classification-calibration!

(Reid+ JMLR2010)

With deep learning, accuracy is dramatically improved but the prediction confidence is no longer accurate.

```
(Guo+, ICML2017; Thulasidasan, NeurIPS2019; Hein+, CVPR2019; Vasudevan+, ICASSP2019; Jagannatha+, ACL2020)
```

Classifier-rejector approach

(Cortes+, ALT2016, NeurlPS2016)

Train r and g simultaneously.

Goal: find $(r,g) \in \mathcal{H} \times \mathcal{R}$ that minimizes

 \mathcal{H} : Prediction function class

 \mathcal{R} : Rejection function class

$$\hat{R}^{\ell_{0-1-c}}(r,g) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0-1-c}(y_i, r(\boldsymbol{x}_i), g(\boldsymbol{x}_i))$$

Limited loss choice (only exponential and max-hinge) for binary case.

(Cortes+ ALT2016, NeurIPS2016)

The multiclass extension of Cortes+ does not work theoretically and experimentally performed worse than confidence-based approach

(Ni+, NeurlPS2019)

Proposal: Cost-sensitive approach

Binary cost-sensitive classification (Scott, 2012)

Binary classification where

false positive penalty \neq false negative penalty

Let $\alpha \in (0,1)$ be false positive cost and $1-\alpha$ be false negative cost Ordinary classification: $\alpha=0.5$

The solution of this problem is

$$sign[p(y = +1|\boldsymbol{x}) - \alpha]$$

Loss requirement: *classification-calibration*

Solving one cost-sensitive classification means knowing if $p(y=+1|m{x})>lpha$

Cost-sensitive approach: motivation

Consider optimal decision rule for the binary case (Chow, 1970)

$$h^*(\boldsymbol{x}) = \begin{cases} \text{Positive} & p(y = +1|\boldsymbol{x}) > 1 - c, \\ \text{Reject} & c \le p(y = +1|\boldsymbol{x}) \le 1 - c, \\ \text{Negative} & p(y = +1|\boldsymbol{x}) < c, \end{cases}$$

We only need to know:

1.
$$p(y = +1|x) > 1 - c$$

2.
$$p(y = +1|x) < c$$

Example: if c = 0.2, if we know p(y = +1|x) > 0.8, it is <u>unneeded to know its exact value</u>.

Solving cost-sensitive classification can validate if $p(y=1|\boldsymbol{x})>\alpha$

Learn two cost-sensitive classifiers for $\alpha = c$ and $\alpha = 1-c$

Connecting cost-sensitive classification to classification with rejection.

Extension to multiclass scenario is simple

$$\mathcal{L}_{CS}^{c,\phi}(\boldsymbol{g};\boldsymbol{x},y) = c\phi(g_y(\boldsymbol{x})) + (1-c)\sum_{y'\neq y}\phi(-g_{y'}(\boldsymbol{x})).$$

Predict if:

1. Only one classifier returns positive

Reject if:

- 1. All classifiers return negative
- 2. More than one classifier return positive

Learn K one-vs-rest cost-sensitive binary classifiers with $\alpha=1-c$ Can be learned at once by learning a K-dimensional output function

Interpretation: cost-sensitive approach

- 1. Learn K binary cost-sensitive classifiers
- 2. Reject if:
 - All classifiers predict negative
 - More than one classifier predicts positive

Loss requirement: *classification-calibration*

A novel approach with flexible loss choices!

Experimental results

Proposed methods

CS-hinge works well in classification from clean labels (Clean)

CS-sigmoid works well in classification from noisy labels (Noisy) and classification from positive and unlabeled data (PU)

Conclusions

Cost-sensitive approach: an approach for classification with rejection based on cost-sensitive classification, which

- 1. can avoid estimating class-posterior probabilities
- 2. allows a flexible choice of losses including non-convex ones
- 3. is applicable to both binary and multiclass cases
- 4. is theoretically justifiable for any classification-calibrated loss.