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Image-based RL vs State-based RL

NYU

e State-based D4PG (blue) vs Image-based D4PG (green).
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[D4PG (Barth-Maron et al., 2018), DeepMind Control Suite (Tassa et al., 2018), Slide credit: Pieter Abbeel]
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Recent developments in Image-based RL NYU

e Model-based: PlaNet (Hafner et al., 2018), Dreamer (Hafner et al., 2019).
e Auxiliary tasks: SAC-AE (Yarats et a., 2019), CURL (Srinivas et al., 2020),

ATC (Stooke et al., 2020).
e Data-augmentation: DrQ (Yarats et al., 2020), RAD (Laskin et al., 2020).
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What is missing? NYU

e Learning a good representation still requires reward signal for a task.
e This means that learned representations are task-dependent and do not

transfer well!
e Can we get closer to the pre-training + fine-tuning paradigm in CV/NLP?
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Decoupling Representation and Exploration ™"

e In CV/NLP, we start with a good dataset. Empirically, a better dataset means
better performance.

e In RL, what should the dataset be?

o Hint: Unsupervised exploration. But good exploration that has high coverage needs good
representations to distinguish novel states from already visited.

Exploration Representation
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Proto-RL NYU

Proto-RL pre-training:

e Learns Prototypical representations via SSL on the collected dataset.
e Explores environment using MaxEnt intrinsic reward based on prototypes to
collect the dataset.

Proto-RL fine-tuning:

e Learns a task-specific policy on pre-trained representations to cast
image-based RL to state-based RL.
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Proto-RL on a Toy Example

e Image-based continuous control environment.

e No reward is given, need to unsupervised exploration.

e Phase 1: task-agnostic pretraining.
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Proto-RL on a Toy Example

e Downstream objective is revealed (reach center).
Can the pre-trained encoder and prototypes be useful?

Phase 2: downstream fine-tuning.

Episode Return after 200K Steps
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[DrQ (Yarats et al., 2020), Curiosity (Pathak et al., 2019), APT (Hao et al., 2020)]
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Experimental Setup and Comparisons NYU

e DeepMind Control Suite (Tassa et al., 2018).
e Two phases: task-agnostic pretraining and downstream fine-tuning.
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Large Scale Task-Agnostic Pretraining ol

e Does task-agnostic pre-training improve downstream RL?
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[DrQ (Yarats et al., 2020), Curiosity (Pathak et al., 2019), APT (Hao et al., 2020), Plan2Explore (Sekar et al., 2020)]
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Thank you for attention!



