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Bayesian Optimization

**Bayesian optimization (BO)

BO is a widely used technique for black-box optimization when the objective function is expensive to
evaluate.

* Strategy of BO:
Step 1: Construct a surrogate model of the black-box function. In general, a Gaussian process (GP)
is used as the prior over the objective function, and the posterior GP is used as a surrogate model.
Step 2: Select the next query point based on the surrogate model using an acquisition function.
Step 3: Augment the data with the new point from Step2 and repeat Steps 1 and 2 for a sequential

design process.

Algorithm 1 Basic pseudo-code for BO
Place GP prioron f ~ GP(p, k)
Observe f at no points according to an initial space-filling experimental design. Set n = no and
D= ({3 fi®1))s - idmis T@x)))
I: while n < N do
2 Update the posterior probability distribution on f using D,,
3:  Zn41 = argmaxzeq Acg(z; Dy)
4: observe f(zn+1) and set Dy, « Dy, + ((Zn41, f(Tn+1)))
5
6:

Increment n
end while




Bayesian Optimization

** Example
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True objective function Stepl: Construct a surrogate model  step3: Evaluate the function value at the
(posterior GP) point from Step 2, augment the
observation, and repeat steps 1 & 2.

s Acquisition functions in BO

012

[1] Expected Improvement (El)

Acq(x; D) = E[(f(x) - fbest)+|Dn] %D i

[2] GP-UCB wl [

Acq(x; Dp) = E[f(0)|Dn] + By Var([f (x)|Dn] I N

[3] Predictive Entropy Search Step2: Select the next query point
by optimizing an acquisition

ACCI(.X'; Dn) = I({x, f(x)}; xoptan) function.



Motivation for New Surrogate Model

**Bound on the optimal function value

Example 1 Technology
Past process: improvement  Current process:
P&t (ay, az) [ (g, az)
* Alot of data were observed. * Only small amount of data are observed.
*  Near optimal value £2%° was found. * Expert knowledge: max f ™" > max fP?*

Prior knowledge about the optimal function value:
maxfcurr > fpast

best
Example 2
Z Bound on the optimal function value:
R max f = fpese(Mmaximum value among the observations D,,)
v J

000000000000

Motivation for new surrogate model:
We propose a novel surrogate model to incorporate the information
of “existence of x € Q, where f(x) = [, (or [, < f(x) < u,)”



Objective Bound Conditional GP (OBCGP)

**Inducing parameter and inducing variable

We introduce an inducing parameter x,;, which means “candidate optimal location,” set its function value
f(xy) to be an inducing variable (latent variable), and then construct the surrogate model for f(xy,)

[1] I,,, lower bound on the optimal function value, is given: Knowledge of a bound on

L, ] the optimal function value:
P “existence of xy; € (,
where f(xy) = I,

[2] not only ,, but also u,, the upper bound of optimal value, is given: (orl, < f(x) < up,)”

fGem) =1, +Zy, Zy ~ Exp(A) => support of f(x)) becomes

flem) = b, + (up — 1y)Zy, Zy ~ Beta(1, a) = support of f(x)) becomes [, u,]

**OBCGP as an alternative to GP to incorporate a bound on the
optimal function value

Construct the conditional GP, where the formulae for mean and covariance are consistent with those for the

posterior GP given (xy, f (xy)).
p(falxm f(xn)) ~ N(fnltin, Znxn)

B k _ kenkiy
Hn = f () k(xp, %)’ Pnxn = K = ke, )
fu= (FG, o), o f i) g = (kg ), kG, a0)) s



Inference and Acquisition Functions for OBCGP

**Parameter estimation via variational inference (VI)

log p()(fn: JX’” ) 2 L(()' C): frl'. ‘X"“ )
= Eq‘g,(Z,\l)[l()gl)H(fH|Z:\’)] =3 I\'L((](D(Z-'\[,)HI)(Z-'\[))

s Computing posterior moments for OBCGP
E[f(x*)an] = E[E[f(x*)an:ZM]an]
~ A+ 1E[Zy|Dy] = A + Ef
Var[f(x*)an] = E[f(x*)len] - (E[f(x*)an])z
~ 62(x"; D, Zy) + T2(EY — (ED)Y)

**Acquisition functions for OBCGP

[1] Moment matching: Gaussian approximation for the OBCGP posterior based on moment matching
=>» Apply acquisition functions that are composed of only the mean and variance (e.g. El, UCB)
[2] Sampling methods: Sampling from the estimated variational distribution q(f (xy;)|Dy)

=>» Apply Monte Carlo sampling for computing acquisition functions.
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Comparison: GP vs OBCGP

+*BO with GP vs OBCGP

Example: lower bound [, is available
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Numerical Study Results

Simple regret (SR): | fopt — fpest|
fopt: True optimal function value
fpest: The best function value among the observations

+* GP-BO vs OBCGP-BO: SR comparison
on test functions
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