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Algorithms with Predictions/Advice

Input: 

• Instance I of problem P, 

• Prediction/Advice A about I

Goal: Design ALG(P, I, A) s.t.,

1. If A is accurate, then cost of ALG is close to OPT(P, I)

2. Otherwise, cost of ALG is close to best (classical) algorithm of P
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• Motivated by the success of ML approaches 
• Falls in Beyond Worst-Case Analysis Framework

Popular approach for Online problems: 
The entire input is not available from the start
(Renault & Rosén, 2015; Angelopoulos et al.,2015; Lykouris & 
Vassilvtiskii, 2018; Purohit et al., 2018; Gollapudi & Panigrahi, 2019; 
Angelopoulos et al., 2020;Dütting et al., 2020; Lattanzi et al., 2020; 
Anand et al.,2020; Bamas et al., 2020)

Also, studied for problems in learning theory, data 
structures, streaming and sketching, and combinatorial 
optimization.
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Ski-Rental Problem. In each (ski) day, the player decides whether to rent 
skis for this day (costs 1) or buy skis for the rest of the season (costs b). 

 The goal is to minimize the cost paid by the player.

 In Classical Online Setting: algorithm with competitive ratio 
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Ski-Rental Problem. In each (ski) day, the player decides whether to rent 
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 The goal is to minimize the cost paid by the player.
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Deterministic Advice: predicted number of ski-days [Purohit et al., 2018]

However, more natural predictions are of form of distribution over days
E.g., uniform distribution over some interval, or normal, exponentials, … 



Our Distributional Advice Framework

Setup. an online problem P, an unknown distribution D on inputs of 
P (inputs to P are drawn from D)

Goal:  find alg. 𝒜𝒜 that minimizes cost 𝒜𝒜;𝐷𝐷 ≔ 𝔼𝔼𝑡𝑡∼𝐷𝐷 cost 𝒜𝒜; 𝑡𝑡
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With Distributional Advice:

• Given an advice family of distributions 𝓒𝓒
• The goal is to design 𝛼𝛼-consistent and 𝛽𝛽-robust algorithm 𝒜𝒜𝒳𝒳

from i.i.d. samples 𝒳𝒳 ∼ D s.t.

• If 𝐷𝐷 ∈ 𝒞𝒞, then cost 𝒜𝒜𝒳𝒳;𝐷𝐷 ≔ 𝔼𝔼𝑡𝑡∼𝐷𝐷 cost 𝒜𝒜; 𝑡𝑡 ≤ 𝛼𝛼 ⋅ OPT𝐷𝐷

• Otherwise, cost 𝒜𝒜𝒳𝒳;𝐷𝐷 ≤ 𝛽𝛽 ⋅ OPT𝐎𝐎𝐎𝐎𝐎𝐎 (the cost of optimal online alg on D)



Our Results (Ski-Rental)
Observation. For 𝛼𝛼 < 𝑒𝑒

𝑒𝑒−1
, there exists no algorithm that given any distribution D,

draws finitely many samples from D and returns an 𝛼𝛼-consistent strategy. 

In other words, it is not possible to beat the existing competitive ratio of ski-
rental without distributional assumptions. 
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𝜆𝜆+1)-robust strategy for ski-rental on log-
concave distributions.
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Observation. For 𝛼𝛼 < 𝑒𝑒
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, there exists no algorithm that given any distribution D,
draws finitely many samples from D and returns an 𝛼𝛼-consistent strategy. 

In other words, it is not possible to beat the existing competitive ratio of ski-
rental without distributional assumptions. 

The robustness guarantee is achieved by using a result of [Mahdian et al., 2012].



(𝟏𝟏 + 𝜺𝜺)-Multiplicative 
Consistency and 

Robustness
𝜺𝜺-Additive

General Log-Concave

Ski-Rental Inapprox. �𝑂𝑂(𝜀𝜀−2)
(𝜆𝜆(1 + 𝜀𝜀))-consistent

and 
( 𝜆𝜆
𝜆𝜆+1)-robust

�𝑂𝑂(𝑏𝑏2𝜀𝜀−2)

Prophet Inequality Inapprox. �𝑂𝑂(𝑛𝑛3𝜀𝜀−2)
(𝜆𝜆(1 + 𝜀𝜀))-consistent

and 
( 2𝜆𝜆
𝜆𝜆−1)-robust

�𝑂𝑂(𝑏𝑏2𝑛𝑛2𝜀𝜀−2)

Result. For any input distribution D, 𝑂𝑂(1/𝜀𝜀4) conditional samples from D 
suffice to design strategy 𝒜𝒜 for ski-rental s.t. cost 𝒜𝒜;𝐃𝐃 ≤ 1 + 𝜀𝜀 OPT𝐃𝐃

‡

An algorithm 𝒜𝒜 achieves 𝜀𝜀-additive approximation if cost 𝒜𝒜,𝐷𝐷 ≤ OPT𝐷𝐷 + 𝜀𝜀‡
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