Learning Online Algorithms with Distributional Advice

Ilias Diakonikolas Vasilis Kontonis Christos Tzamos

Ali Vakilian Nikos Zarifis

Algorithms with Predictions/Advice

Input:

- Instance I of problem P,
- Prediction/Advice A about I

Goal: Design ALG(P, I, A) s.t.,

- 1. If A is accurate, then cost of ALG is close to OPT(P, I)
- 2. Otherwise, cost of **ALG** is close to best (classical) algorithm of **P**

Algorithms with Advice

Input:

- Instance I of problem P,
- Prediction/Advice A abc

Goal: Design ALG(P, I, A) s

- 1. If A is accurate, then cc
- 2. Otherwise, cost of ALC

- Motivated by the success of ML approaches
- Falls in Beyond Worst-Case Analysis Framework

Popular approach for Online problems:

The entire input is not available from the start

(Renault & Rosén, 2015; Angelopoulos et al., 2015; Lykouris & Vassilvtiskii, 2018; Purohit et al., 2018; Gollapudi & Panigrahi, 2019; Angelopoulos et al., 2020; Dütting et al., 2020; Lattanzi et al., 2020; Anand et al., 2020; Bamas et al., 2020)

Also, studied for problems in learning theory, data structures, streaming and sketching, and combinatorial optimization.

Main Contribution: distributional advice, instead of det. Advice

Main Contribution: distributional advice, instead of det. Advice

Ski-Rental Problem. In each (ski) day, the player decides whether to **rent** skis for this day (costs 1) or buy skis for the rest of the season (costs b).

- ☐ The goal is to minimize the cost paid by the player.
- \square In Classical Online Setting: algorithm with competitive ratio $\frac{e}{e-1}$

Main Contribution: distributional advice, instead of det. Advice

Ski-Rental Problem. In each (ski) day, the player decides whether to rent skis for this day (costs 1) or buy skis for the rest of the season (costs b).

- ☐ The goal is to minimize the cost paid by the player.
- \Box In Classical Online Setting: algorithm with competitive ratio $\frac{e}{e-1}$

Deterministic Advice: predicted number of ski-days [Purohit et al., 2018]

Main Contribution: distributional advice, instead of det. Advice

Ski-Rental Problem. In each (ski) day, the player decides whether to rent skis for this day (costs 1) or buy skis for the rest of the season (costs b).

- ☐ The goal is to minimize the cost paid by the player.
- \square In Classical Online Setting: algorithm with competitive ratio $\frac{e}{e-1}$

Deterministic Advice: predicted number of ski-days [Purohit et al., 2018]

However, more natural predictions are of form of **distribution over days E.g.**, uniform distribution over some interval, or normal, exponentials, ...

Our Distributional Advice Framework

Setup. an online problem **P**, an unknown distribution **D** on inputs of **P** (inputs to **P** are drawn from D)

Goal: find alg. \mathcal{A} that minimizes $cost(\mathcal{A}; D) := \mathbb{E}_{t \sim D}[cost(\mathcal{A}; t)]$

Our Distributional Advice Framework

Setup. an online problem **P**, an unknown distribution **D** on inputs of **P** (inputs to **P** are drawn from D)

Goal: find alg. \mathcal{A} that minimizes $cost(\mathcal{A}; D) := \mathbb{E}_{t \sim D}[cost(\mathcal{A}; t)]$

With Distributional Advice:

- Given an advice family of distributions $oldsymbol{c}$
- The goal is to design α -consistent and β -robust algorithm $\mathcal{A}_{\mathcal{X}}$ from i.i.d. samples $\mathcal{X} \sim D$ s.t.
 - If $D \in \mathcal{C}$, then $cost(\mathcal{A}_{\mathcal{X}}; D) \coloneqq \mathbb{E}_{t \sim D}[cost(\mathcal{A}; t)] \le \alpha \cdot OPT_D$
 - Otherwise, $cost(\mathcal{A}_{\mathcal{X}}; D) \leq \beta \cdot OPT_{\mathbf{ONL}}$ (the cost of optimal online alg on D)

Our Results (Ski-Rental)

Observation. For $\alpha < \frac{e}{e-1}$, there exists no algorithm that given any distribution **D**, draws finitely many samples from **D** and returns an α -consistent strategy.

In other words, it is not possible to beat the existing competitive ratio of skirental without distributional assumptions.

Our Results (Ski-Rental)

Observation. For $\alpha < \frac{e}{e-1}$, there exists no algorithm that given any distribution **D**, draws finitely many samples from **D** and returns an α -consistent strategy.

In other words, it is not possible to beat the existing competitive ratio of skirental without distributional assumptions.

Result 1. For any $\lambda > 1$, there exists an algorithm that draws $\tilde{O}(1/\varepsilon^2)$ samples and outputs a $(\lambda(1+\varepsilon))$ -consistent and $(\frac{\lambda}{\lambda+1})$ -robust strategy for ski-rental on log-concave distributions.

Moreover, this sample complexity is essentially optimal: $\Omega(1/\epsilon^2)$ samples are necessary to get a $(1 + \epsilon)$ -consistent strategy.

Our Results (Ski-Rental)

Observation. For $\alpha < \frac{e}{e-1}$, there exists no algorithm that given any distribution **D**, draws finitely many samples from **D** and returns an α -consistent strategy.

In other words, it is not possible to beat the existing competitive ratio of skirental without distributional assumptions.

Result 1. For any $\lambda > 1$, there exists an algorithm that draws $\tilde{O}(1/\varepsilon^2)$ samples and outputs a $(\lambda(1+\varepsilon))$ -consistent and $(\frac{\lambda}{\lambda+1})$ -robust strategy for ski-rental on log-concave distributions.

Moreover, this sample complexity is essentially optimal: $\Omega(1/\epsilon^2)$ samples are necessary to get a $(1 + \epsilon)$ -consistent strategy.

The robustness guarantee is achieved by using a result of [Mahdian et al., 2012].

	(1+arepsilon)-Multiplicative		Consistency and	$arepsilon$ -Additive ‡
	General	Log-Concave	Robustness	<i>E</i> -Additive
Ski-Rental	Inapprox.	$\tilde{O}(arepsilon^{-2})$	$(\lambda(1+\varepsilon))$ -consistent and $(\frac{\lambda}{\lambda+1})$ -robust	$\tilde{O}(b^2 \varepsilon^{-2})$
Prophet Inequality	Inapprox.	$\tilde{O}(n^3 \varepsilon^{-2})$	$(\lambda(1+\varepsilon))$ -consistent and $(\frac{2\lambda}{\lambda-1})$ -robust	$\tilde{O}(b^2n^2\varepsilon^{-2})$

[‡]An algorithm \mathcal{A} achieves ε -additive approximation if $cost(\mathcal{A}, D) \leq OPT_D + \varepsilon$

Result. For any input distribution **D**, $O(1/\varepsilon^4)$ conditional samples from **D** suffice to design strategy \mathcal{A} for ski-rental s.t. $cost(\mathcal{A}; \mathbf{D}) \leq (1 + \varepsilon)OPT_{\mathbf{D}}$

