
Arsenii Kuznetsov1         Pavel Shvechikov1,2      Alexander Grishin1,3       Dmitry Vetrov1,3

Controlling Overestimation Bias 
with Truncated Mixture of Continuous Distributional Quantile Critics

1   Samsung AI center, Moscow
2  Higher School of Economics, Moscow
3   Samsung HSE Laboratory 1



1. Value estimates are imprecise

2. Agent pursues erroneous estimates

3. Errors propagate through time  

4. Performance degrades
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We propose a novel method:

Truncated Quantile Critics (TQC)

Overestimation bias in off-policy learning
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Key elements of TQC

1. Distributional critics
● Impressive empirical performance

● Captures info about return variance
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Key elements of TQC

1. Distributional critics
● Impressive empirical performance

● Captures info about return variance

2. Ensembling of the critics
● Increases performance and stability

3. Truncating the mixture of distributions
● Alleviates overestimation
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1. Incorporates stochasticity of returns into the overestimation control

TQC’s novelties
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1. Incorporates stochasticity of returns into the overestimation control

2. Provides fine-grained and adjustable level of the overestimation control

3. Decouples the overestimation control and the number of critics

TQC’s novelties
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TQC is a new SOTA on MuJoCo

10



TQC is a new SOTA on MuJoCo
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Overestimation:  intuition 
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Sources of distortion, U:

1. Insufficient data
2. Limited model capacity
3. SGD noise
4. Env’s stochasticity
5. Ongoing policy changes
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Overestimation:  intuition 

Actions, a

Value, Q(a) 
Noisy samples
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Approximation, Q
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Q(aAPPROX)

Q(aAPPROX)
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Error

Sources of distortion, U:

1. Insufficient data
2. Limited model capacity
3. SGD noise
4. Env’s stochasticity
5. Ongoing policy changes



Overestimation:  mathematical model1

Predicted maximum:

19[1]: Thrun, Sebastian, and Anton Schwartz. "Issues in using function approximation for reinforcement learning."



Predicted maximum averaged over zero mean distortion:
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Predicted maximum averaged over zero mean distortion:

Jensen inequality

[1]: Thrun, Sebastian, and Anton Schwartz. "Issues in using function approximation for reinforcement learning."
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  Predicted                ≥                True

Predicted maximum averaged over zero mean distortion:

[1]: Thrun, Sebastian, and Anton Schwartz. "Issues in using function approximation for reinforcement learning."

Overestimation:  mathematical model1



1. Policy exploits critic’s erroneous estimates 

2. TD-learning propagates estimation errors

3. Positive feedback loop may occur
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Predicted maximum averaged over zero mean distortion:

  Predicted                ≥                True

[1]: Thrun, Sebastian, and Anton Schwartz. "Issues in using function approximation for reinforcement learning."

Overestimation:  mathematical model1



Soft Actor Critic2

25[2]: Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 



Soft Actor Critic2

Soft Policy Evaluation:

26[2]: Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 



Soft Actor Critic2

Soft Policy Evaluation:

27[2]: Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 



Soft Actor Critic2

Soft Policy Evaluation:

28[2]: Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." 



Soft Actor Critic2

Soft Policy Evaluation:
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Overestimation alleviation
(Clipped Double Estimate3): 
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Limitations:

● Coarse bias control 
● Wasteful aggregation

Solution:

Truncated Quantile Critics 

Overestimation alleviation
(Clipped Double Estimate3): 
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TQC  step 1:    Prediction of N distributions
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TQC  step 2:    Pooling
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TQC  step 3:    Truncation
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TQC  step 4:    Discounting and Shifting



Training

For each Z-network:
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[4]: Dabney, Will, et al. "Distributional reinforcement learning with quantile regression." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



Training

For each Z-network:
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4

[4]: Dabney, Will, et al. "Distributional reinforcement learning with quantile regression." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



Training

For each Z-network:

Policy: 
 Maximizes nontruncated average of all atoms of the mixture 
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4

[4]: Dabney, Will, et al. "Distributional reinforcement learning with quantile regression." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



Our contribution: Truncated Quantile Critics
1. Uses return stochasticity for overestimation control
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A novel direction:  interplay between overestimation and stochasticity 
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A novel direction:  interplay between overestimation and stochasticity 
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Our contribution: Truncated Quantile Critics
1. Uses return stochasticity for overestimation control

2. Method provides adjustable and fine-grained overestimation bias control

# of quantiles
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M = 5

M = 10 Resolution
 increases

1 / 5 2 / 5 Fraction of dropped quantiles

Overestimation 
compensation

... ...

3 / 10



Our contribution: Truncated Quantile Critics

# of networks

Fraction of dropped quantiles

N = 1

N = 2

N = 3
Better performance

More computations

...

... ...

1. Uses return stochasticity for overestimation control

2. Method provides adjustable and fine-grained overestimation bias control

3. Decouples overestimation control and number of approximators
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Our contribution: Truncated Quantile Critics

1. Uses return stochasticity for overestimation control

2. Method provides fine-grained overestimation bias control

3. Decouples overestimation control and multiplicity of approximators

4. New SOTA on MuJoCo locomotion suite
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Substantial improvement on all environments
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–  Monte-Carlo estimate

TQC

Overestimation measurement

TQC



49

Overestimation measurement

There is a clear optimum in terms of performance.

TQC TQC
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SAC with min over multiple critics N=1..5

Overestimation measurement
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SAC with linear combination of minimum and maximum Q-functions4:

[4] Fujimoto, Scott, David Meger, and Doina Precup. "Off-Policy Deep Reinforcement Learning without Exploration."

Overestimation measurement
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Sources of TQC performance:
● Distributional critics
● Different procedure of overestimation correction
● Benefits from larger networks

Overestimation measurement

TQC TQC SACSAC
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Links

1. Arxiv Paper                https://arxiv.org/abs/2005.04269 

2. Method Page            https://bayesgroup.github.io/tqc/ 

3. Tensorflow Code      https://github.com/bayesgroup/tqc   

4. Pytorch Code  https://github.com/bayesgroup/tqc_pytorch 

5. Video             https://www.youtube.com/watch?v=idp4k1L9UhM   

https://arxiv.org/abs/2005.04269
https://bayesgroup.github.io/tqc/
https://github.com/bayesgroup/tqc
https://github.com/bayesgroup/tqc_pytorch
https://www.youtube.com/watch?v=idp4k1L9UhM

