Constructive universal high-dimensional distribution generation through deep ReLU networks

Dmytro Perekrestenko

ETH zürich

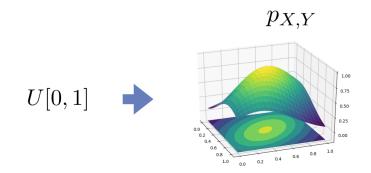
July 2020

joint work with Stephan Müller and Helmut Bölcskei

Motivation

- Deep neural networks are widely used as generative models for complex data as images and natural language.
- Many generative network architectures are based on the transformation of low-dimensional distributions to high-dimensional ones, e.g., Variational Autoencoder, Wasserstein Autoencoder, etc.
- This talk answers the question of whether there exists a fundamental limitation in going from low dimension to a higher one.

Our contribution



This talk will show that there is no such limitation.

Generation of multi-dimensional distributions from U[0,1]

- Classical approaches transforming distributions of the same dimension, e.g., the Box-Muller method [Box and Muller, 1958].
- [Bailey and Telgarsky, 2018] show that deep ReLU networks can transport U[0,1] to $U[0,1]^d$.

Neural networks

A map $\Phi: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ given by

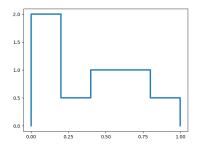
$$\Phi := W_L \circ \rho \circ W_{L-1} \circ \rho \circ \cdots \circ \rho \circ W_1$$

is called a neural network (NN).

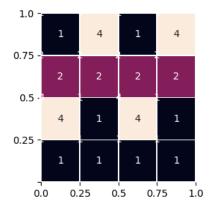
- Affine maps: $W_{\ell} = A_{\ell}x + b_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell \in \{1, 2, \dots, L\}$
- Non-linearity or activation function: ρ acts component-wise
- Network connectivity: $\mathcal{M}(\Phi)$ total number of non-zero parameters in W_ℓ
- \blacksquare Depth of network or number of layers: $\mathcal{L}(\Phi):=L$

We denote by $\mathcal{N}_{d,d'}$ the set of all ReLU networks with input dimension $N_0 = d$ and output dimension $N_L = d'$.

Histogram distributions



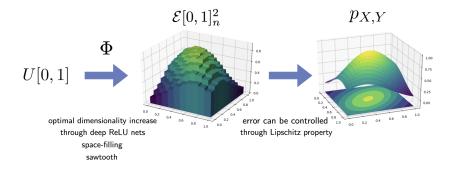
Histogram distribution $\mathcal{E}[0,1]_n^1$, d = 1, n = 5.



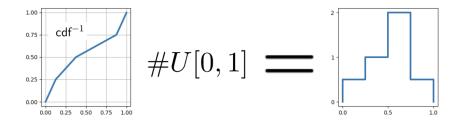
Histogram distribution $\mathcal{E}[0,1]_n^2$, d=2, n=4.

Our goal

Transport U[0,1] to an approximation of any given distribution supported on $[0,1]^d$. For illustration purposes we look at d = 2.



ReLU networks and histograms



Takeaway message

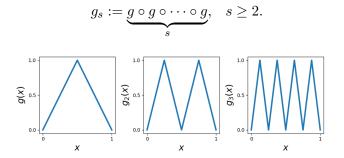
For any histogram distribution there exists a ReLU net that generates it from a uniform input. This net realizes an inverse cumulative distribution function (cdf^{-1}) .

The key ingredient to dimension increase

Sawtooth function $g:[0,1] \rightarrow [0,1]$,

$$g(x) = \begin{cases} 2x, & \text{if } x < \frac{1}{2}, \\ 2(1-x), & \text{if } x \ge \frac{1}{2}, \end{cases}$$

let $g_1(x) = g(x)$, and define the "sawtooth" function of order s as the s-fold composition of g with itself according to



NN realize sawtooth as $g(x) = 2\rho(x) - 4\rho(x - 1/2) + 2\rho(x - 1)$.

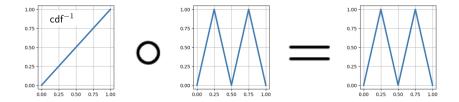
Related work

Theorem ([Bailey and Telgarsky, 2018, Th. 2.1], case d = 2)

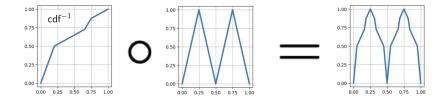
There exists a ReLU network $\Phi: x \to (x, g_s(x)), \Phi \in \mathcal{N}_{1,d}$ with connectivity $\mathcal{M}(\Phi) \leq Cs$ for some constant C > 0, and of depth $\mathcal{L}(\Phi) \leq s + 1$, such that

$$W(\Phi \# U[0,1], U[0,1]^2) \le \frac{\sqrt{2}}{2^s}.$$

Main proof idea - space-filling property of sawtooth function.

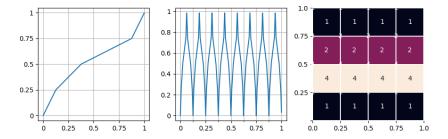


Generalization of the space-filling property



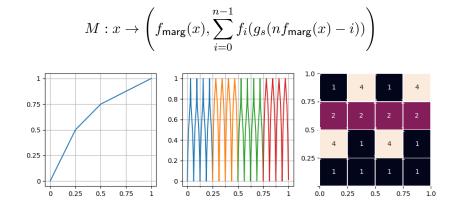
Approximating 2D distributions

 $M: x \to (x, f(g_s(x)))$



Generating a histogram distribution via the transport map $(x, f(g_s(x)))$. Left—the function f(x), center— $f(g_4(x))$, right—a heatmap of the resulting histogram distribution.

Approximating 2D distributions con't



Generating a general 2-D histogram distribution. Left—the function $f_1 = f_3$, center— $\sum_{i=0}^{3} f_i \left(g_3 \left(4x - i \right) \right) \right)$, right—a heatmap of the resulting histogram distribution. The function $f_0 = f_2$ is depicted on the left in Figure 3.

Generating histogram distributions with NNs

Theorem

For every distribution $p_{X,Y}(x,y)$ in $\mathcal{E}[0,1]_n^2$, there exists a $\Psi \in \mathcal{N}_{1,2}$ with connectivity $\mathcal{M}(\Psi) \leq C_1 n^2 + C_2 ns$, for some constants $C_1, C_2 > 0$, and of depth $\mathcal{L}(\Psi) \leq s + 3$, such that

$$W(\Phi \# U[0,1], p_{X,Y}) \le \frac{2\sqrt{2}}{n2^s}.$$

- \blacksquare Error decays exponentially with depth and linearly in n
- Connectivity is in O(n²) which is of the same order as the number of E[0, 1]²_n's parameters (n² − 1).
- Special case n = 1 coincides with [Bailey and Telgarsky, 2018, Th. 2.1].

Theorem

Let $p_{X,Y}$ be a 2-dimensional Lipschitz-continuous pdf of finite differential entropy on its support $[0,1]^2$. Then, for every n > 0, there exists a $\tilde{p}_{X,Y} \in \mathcal{E}[0,1]_n^2$ such that

$$W(p_{X,Y}, \tilde{p}_{X,Y}) \le \frac{1}{2} \| p_{X,Y} - \tilde{p}_{X,Y} \|_{L_1([0,1]^2)} \le \frac{L\sqrt{2}}{2n}$$

Universal approximation

Theorem

Let $p_{X,Y}$ be an *L*-Lipschitz continuous pdf supported on $[0,1]^2$. Then, for every n > 0, there exists a $\Phi \in \mathcal{N}_{1,2}$ with connectivity $\mathcal{M}(\Phi) \leq C_1 n^2 + C_2 ns$ for some constants $C_1, C_2 > 0$, and of depth $\mathcal{L}(\Phi) \leq s + 3$, such that

$$W(\Phi \# U[0,1], p_{X,Y}) \le \frac{L\sqrt{2}}{2n} + \frac{2\sqrt{2}}{n2^s}.$$

Takeaway message

ReLU networks have no fundamental limitation in going from low dimension to a higher one.

Bailey, B. and Telgarsky, M. J. (2018). Size-noise tradeoffs in generative networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 6489–6499. Curran Associates, Inc.

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. Ann. Math. Statist., 29(2):610–611.