A Nearly-Linear Time Algorithm for Exact Community Recovery in Stochastic Block Model

Peng Wang ${ }^{1}$, Zirui Zhou ${ }^{2}$, Anthony Man-Cho So ${ }^{1}$
${ }^{1}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
${ }^{2}$ Department of Mathematics, Hong Kong Baptist University

June 14, 2020

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Community Detection

- Community detection refers to the problem of inferring similarity classes of vertices (i.e., communities) in a network by observing their local interactions (Abbe 2017); see the below graphs.
- Broad applications in machine learning, biology, social science and many areas.
- Exact recovery requires to identify the entire partition correctly.

Overview

- Problem: exactly recover the communities in the binary symmetric stochastic block model (SBM), where n vertices are partitioned into two equal-sized communities and the vertices are connected with probability $p=\alpha \log (n) / n$ within communities and $q=\beta \log (n) / n$ across communities.
- Goal: propose an efficient algorithm that achieves exact recovery at the information-theoretic limit, i.e., $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$.
- Proposed Method: a two-stage iterative algorithm:
(i) 1st-stage: power method, coarse estimate,
(ii) 2nd-stage: generalized power method, refinement.
- Theoretic Results: the proposed method can achieve exact recovery at the information-theoretic limit within $\tilde{O}(n)$ time complexity.

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Stochastic Block Model

Given n nodes in two equal-sized clusters, we denote by \boldsymbol{x}^{*} its true community structures, e.g., for every $i \in[n], x_{i}^{*}=1$ if the node i belongs to the first cluster and $x_{i}^{*}=-1$ if it belongs to the second one.

Model 1 (Binary symmetric SBM)

The elements $\left\{a_{i j}: 1 \leq i \leq j \leq n\right\}$ of \boldsymbol{A} are generated independently by

$$
a_{i j} \sim \begin{cases}\operatorname{Bern}(p), & \text { if } x_{i}^{*} x_{j}^{*}=1 \\ \operatorname{Bern}(q), & \text { if } x_{i}^{*} x_{j}^{*}=-1\end{cases}
$$

where

$$
p=\frac{\alpha \log n}{n} \quad \text { and } \quad q=\frac{\beta \log n}{n}
$$

for some constants $\alpha>\beta>0$. Besides, we have $a_{i j}=a_{j i}$ for all $1 \leq j<i \leq n$.
The problem of achieving exact recovery is to develop efficient methods that can find \boldsymbol{x}^{*} or $\boldsymbol{-} \boldsymbol{x}^{*}$ with high probability given the adjacency matrix A.

Phase Transition

The maximum likelihood (ML) estimator of \boldsymbol{x}^{*} in the binary symmetric SBM is the solution of the following problem:

$$
\begin{equation*}
\max \left\{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}: \mathbf{1}_{n}^{T} \boldsymbol{x}=0, x_{i}= \pm 1, i=1, \ldots, n\right\} \tag{1}
\end{equation*}
$$

Theorem 1 (Abbe et al. (2016), Mossel et al. (2014))

In the binary symmetric SBM, exact recovery is impossible if $\sqrt{\alpha}-\sqrt{\beta}<\sqrt{2}$, while it is possible and can be achieved by the ML estimator if $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$.

In literature, $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$ is called the information-theoretic limit.
Question: Is it possible to develop efficient methods for achieving exact recovery at the information-theoretic limit?

Related Works

Table: Methods above the information-theoretic limit

Authors	Methods	Time complexity	Recovery bounds
Boppana, 1987	spectral algo.	polynomial time	$(\alpha-\beta)^{2} /(\alpha+\beta)>72$
McSherry, 2001	spectral algo.	polynomial time	$(\alpha-\beta)^{2} /(\alpha+\beta)>64$
Abbe et al., 2016	SDP	polynomial time	$3(\alpha-\beta)^{2}>24(\alpha+\beta)+$ $8(\alpha-\beta)$
Bandeira et al., 2016	manifold opti.	polynomial time	$(p-q) / \sqrt{p+q} \geq c n^{-1 / 6}$

Table: Methods at the information-theoretic limit

Authors	Methods	Time complexity	Recovery bounds
Hajek et al., 2016	SDP	polynomial time	$\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$
Abbe et al., 2017	spectral algo.	polynomial time	$\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$
Gao et al., 2017	two-stage algo.	polynomial time	$\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$
Our paper	two-stage algo.	nearly-linear time	$\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Algorithm

For any $\boldsymbol{v} \in \mathbb{R}^{n}, \boldsymbol{v} /|\boldsymbol{v}|$ denotes the vector of \mathbb{R}^{n} defined as

$$
\left(\frac{v}{|\boldsymbol{v}|}\right)_{i}=\left\{\begin{array}{ll}
1, & \text { if } v_{i} \geq 0, \\
-1, & \text { otherwise },
\end{array} \quad i=1, \ldots, n\right.
$$

Main Theorem

Theorem 2 (Iteration Complexity for Exact Recovery)

Let \boldsymbol{A} be randomly generated by Model 1. If $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$, then the following statement holds with probability at least $1-n^{-\Omega(1)}$: Algorithm 1 finds x^{*} or $-x^{*}$ in $O(\log n / \log \log n)$ power iterations and $O(\log n / \log \log n)$ generalized power iterations.

Consequences:

- Algorithm 1 achieves exact recovery at the information-theoretic limit.
- Explicit iteration complexity bound for Algorithm 1 to achieve exact recovery.

The number of non-zero entries in \boldsymbol{A} is, with high probability, in the order of $n \log n$.

Corollary 3 (Time Complexity for Exact Recovery)

Let \boldsymbol{A} be randomly generated by Model 1. If $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$, then with probability at least $1-n^{-\Omega(1)}$, Algorithm 1 finds x^{*} or $-x^{*}$ in $O\left(n \log ^{2} n\right)$ time complexity.

Analysis of Power Method

Proposition 1 (Convergence Rate of Power Method)

Let $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be the sequence generated in the first-stage of Algorithm 1. Then, it holds with probability at least $1-n^{-\Omega(1)}$ that

$$
\begin{equation*}
\min _{s \in\{ \pm 1\}}\left\|\boldsymbol{y}^{k}-s \boldsymbol{u}_{1}\right\|_{2} \lesssim n /(\log n)^{k / 2}, \forall k \geq 0 \tag{2}
\end{equation*}
$$

where \boldsymbol{u}_{1} is an eigenvector of \boldsymbol{B} associated with the largest eigenvalue.

- $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ with high probability converges at least linearly to \boldsymbol{u}_{1}.
- Equation (2) shows that the ratio in the linear rate of convergence tends to 0 as $n \rightarrow \infty$.

Lemma 4 (Distance from Leading Eigenvalue of B to Ground Truth)

It holds with probability at least $1-n^{-\Omega(1)}$ that

$$
\begin{equation*}
\min _{s \in\{ \pm 1\}}\left\|\sqrt{n} \boldsymbol{u}_{1}-s x^{*}\right\|_{2} \lesssim \sqrt{n / \log n} . \tag{3}
\end{equation*}
$$

- It suffices to compute $\boldsymbol{y}^{N_{p}}$ such that $\min _{s \in\{ \pm 1\}}\left\|\boldsymbol{y}^{N_{p}}-s \boldsymbol{u}_{1}\right\|_{2} \lesssim 1 / \sqrt{\log n}$. By (2), we have $N_{p}=O(\log n / \log \log n)$.

Analysis of Generalized Power Method

Proposition 2 (Convergence Rate of Generalized Power Method)

Let $\alpha>\beta>0$ be fixed such that $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$. Suppose that the x^{0} in Algorithm 1 satisfies $\left\|x^{0}\right\|_{2}=\sqrt{n}$ and $\left\|x^{0}-x^{*}\right\|_{2} \lesssim \sqrt{n / \log n}$. Then, it holds with probability at least $1-n^{-\Omega(1)}$ that

$$
\begin{equation*}
\left\|x^{k}-x^{*}\right\|_{2} \leq\left\|x^{0}-x^{*}\right\|_{2} /(\log n)^{k / 2} \tag{4}
\end{equation*}
$$

- Note that $\left\|x^{0}-x^{*}\right\|_{2} \leq\left\|x^{0}-\sqrt{n} \boldsymbol{u}_{1}\right\|_{2}+\left\|\sqrt{n} \boldsymbol{u}_{1}-x^{*}\right\|_{2} \lesssim \sqrt{n / \log n}$.

Lemma 5 (One-step Convergence of Generalized Power Iterations)

For any fixed $\alpha>\beta>0$ such that $\sqrt{\alpha}-\sqrt{\beta}>\sqrt{2}$, the following event happens with probability at least $1-n^{-\Omega(1)}$: for all $x \in\{ \pm 1\}^{n}$ such that $\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2} \leq 2$, it holds that

$$
\begin{equation*}
B x /|B x|=x^{*} \tag{5}
\end{equation*}
$$

- This lemma indicates that the GPM exhibits finite termination.
- If $\left\|x^{0}-x^{*}\right\|_{2} /(\log n)^{N_{g} / 2} \leq 2$, by (4), we have $\left\|x^{N_{g}}-x^{*}\right\|_{2} \leq 2$. Then, $x^{N_{g}+1}=x^{*}$. One can verify $N_{g}=O(\log n / \log \log n)$.

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Phase Transition and Computation Efficiency

- Benchmark methods:
- SDP-based approach in Amini et al. (2018) solved by ADMM.
- Manifold optimization (MFO) based approach in Bandeira et al. (2016) solved by manifold gradient descent (MGD) method.
- Spectral clustering approach in Abbe et al. (2017) solved by Matlab function eigs.
- Parameters setting:
- $n=300 ; \alpha$ and β vary from 0 to 30 and 0 to 10 , with increments 0.5 and 0.4 , respectively.
- For fixed (α, β), we generate 40 instances and calculate the ratio of exact recovery.

running time: 25 s

running time: 9313 s

running time: 1064 s

running time: 118 s

Figure: Phase transition: the x-axis is β, the y-axis is α, and darker pixels represent lower empirical probability of success. The red curve is $\sqrt{\alpha}-\sqrt{\beta}=\sqrt{2}$.

Convergence Performance

- Parameters setting:
- $\alpha=10, \beta=2$.
- $n=1000,5000,10000$.

Figure: Convergence performance: the x-axis is number of iterations, the y-axis for GPM is $\left\|\boldsymbol{x}^{k} \boldsymbol{x}^{k}{ }^{T}-\boldsymbol{x}^{*} \boldsymbol{x}^{* T}\right\|_{F}$, and the y-axis for MGD is $\left\|\boldsymbol{Q}^{k} \boldsymbol{Q}^{k^{T}}-\boldsymbol{x}^{*} \boldsymbol{x}^{* T}\right\|_{F}$, where \boldsymbol{x}^{k} and \boldsymbol{Q}^{k} are the iterates generated in the k-th iteration of GPM and MGD, respectively.

Table of Contents

(1) Overview
(2) Introduction
(3) Main Results
(4) Experimental Results
(5) Conclusions

Conclusions

(1) We propose a two-stage iterative algorithm to solve the problem of exact community recovery in the binary symmetric SBM:
(i) 1st-stage: power method,
(ii) 2nd-stage: generalized power method.
(2) We show that the proposed method can achieve exact recovery at the information-theoretic limit within $\tilde{O}(n)$ time complexity.
(3) Numerical experiments demonstrate that the proposed approach has strong recovery performance and is highly efficient.

