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Community Detection

• Community detection refers to the problem of inferring
similarity classes of vertices (i.e., communities) in a network by observing
their local interactions (Abbe 2017); see the below graphs.

• Broad applications in machine learning, biology, social science and many
areas.

• Exact recovery requires to identify the entire partition correctly.



Overview

• Problem: exactly recover the communities in the binary symmetric
stochastic block model (SBM), where n vertices are partitioned into
two equal-sized communities and the vertices are connected with
probability p = α log(n)/n within communities and q = β log(n)/n
across communities.

• Goal: propose an efficient algorithm that achieves exact recovery at
the information-theoretic limit, i.e.,

√
α−
√
β >
√

2.

• Proposed Method: a two-stage iterative algorithm:

(i) 1st-stage: power method, coarse estimate,

(ii) 2nd-stage: generalized power method, refinement.

• Theoretic Results: the proposed method can achieve exact recovery
at the information-theoretic limit within Õ(n) time complexity.
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Stochastic Block Model

Given n nodes in two equal-sized clusters, we denote by x∗ its true
community structures, e.g., for every i ∈ [n], x∗i = 1 if the node i belongs
to the first cluster and x∗i = −1 if it belongs to the second one.

Model 1 (Binary symmetric SBM)

The elements {aij : 1 ≤ i ≤ j ≤ n} of A are generated independently by

aij ∼

{
Bern(p), if x∗i x

∗
j = 1,

Bern(q), if x∗i x
∗
j = −1,

where

p =
α log n

n
and q =

β log n

n
for some constants α > β > 0. Besides, we have aij = aji for all 1 ≤ j < i ≤ n.

The problem of achieving exact recovery is to develop efficient methods
that can find x∗ or −x∗ with high probability given the adjacency matrix
A.



Phase Transition

The maximum likelihood (ML) estimator of x∗ in the binary symmetric
SBM is the solution of the following problem:

max
{
xTAx : 1T

n x = 0, xi = ±1, i = 1, . . . , n
}
. (1)

Theorem 1 (Abbe et al. (2016), Mossel et al. (2014))

In the binary symmetric SBM, exact recovery is impossible if√
α−
√
β <
√

2, while it is possible and can be achieved by the ML
estimator if

√
α−
√
β >
√

2.

In literature,
√
α−
√
β >
√

2 is called the information-theoretic limit.

Question: Is it possible to develop efficient methods for achieving exact
recovery at the information-theoretic limit?



Related Works

Table: Methods above the information-theoretic limit

Authors Methods Time complexity Recovery bounds

Boppana, 1987 spectral algo. polynomial time (α− β)2/(α+ β) > 72

McSherry, 2001 spectral algo. polynomial time (α− β)2/(α+ β) > 64

Abbe et al., 2016 SDP polynomial time
3(α− β)2 > 24(α+ β)+
8(α− β)

Bandeira et al., 2016 manifold opti. polynomial time (p − q)/
√
p + q ≥ cn−1/6

Table: Methods at the information-theoretic limit

Authors Methods Time complexity Recovery bounds

Hajek et al., 2016 SDP polynomial time
√
α−
√
β >
√

2

Abbe et al., 2017 spectral algo. polynomial time
√
α−
√
β >
√

2

Gao et al., 2017 two-stage algo. polynomial time
√
α−
√
β >
√

2

Our paper two-stage algo. nearly-linear time
√
α−
√
β >
√

2
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Algorithm

Algorithm 1 A Two-Stage Algorithm for Exact Recovery
1: Input: adjacency matrix A, positive integer N
2: set ρ← 1T

n A1n/n
2 and B ← A− ρEn

3: choose y 0 randomly with uniform distribution over the unit sphere
4: for k = 1, 2, . . . ,N do
5: set y k ← By k−1/‖By k−1‖2

6: end for
7: set x0 ←

√
nyN

8: for k = 1, 2, . . . do
9: set xk ← Bxk−1/|Bxk−1|

10: if xk = xk−1 then
11: terminate and return xk

12: end if
13: end for

power method
(PM): coarse

estimate

generalized
power method

(GPM): re-
finement

stopping criteria

For any v ∈ Rn, v/|v | denotes the vector of Rn defined as(
v
|v |

)
i

=

{
1, if vi ≥ 0,

−1, otherwise,
i = 1, . . . , n.



Main Theorem

Theorem 2 (Iteration Complexity for Exact Recovery)

Let A be randomly generated by Model 1. If
√
α−
√
β >
√

2, then the
following statement holds with probability at least 1− n−Ω(1): Algorithm 1
finds x∗ or −x∗ in O(log n/ log log n) power iterations and O(log n/ log log n)
generalized power iterations.

Consequences:

• Algorithm 1 achieves exact recovery at the information-theoretic limit.

• Explicit iteration complexity bound for Algorithm 1 to achieve exact
recovery.

The number of non-zero entries in A is, with high probability, in the order of
n log n.

Corollary 3 (Time Complexity for Exact Recovery)

Let A be randomly generated by Model 1. If
√
α−
√
β >
√

2, then with
probability at least 1− n−Ω(1), Algorithm 1 finds x∗ or −x∗ in O(n log2 n) time
complexity.



Analysis of Power Method
Proposition 1 (Convergence Rate of Power Method)

Let {y k}k≥0 be the sequence generated in the first-stage of Algorithm 1. Then,
it holds with probability at least 1− n−Ω(1) that

min
s∈{±1}

‖y k − su1‖2 . n/(log n)k/2, ∀ k ≥ 0, (2)

where u1 is an eigenvector of B associated with the largest eigenvalue.

• {y k}k≥0 with high probability converges at least linearly to u1.

• Equation (2) shows that the ratio in the linear rate of convergence tends
to 0 as n→∞.

Lemma 4 (Distance from Leading Eigenvalue of B to Ground Truth)

It holds with probability at least 1− n−Ω(1) that

min
s∈{±1}

∥∥√nu1 − sx∗
∥∥

2
.
√

n/ log n. (3)

• It suffices to compute yNp such that mins∈{±1} ‖yNp − su1‖2 . 1/
√

log n.
By (2), we have Np = O(log n/ log log n).



Analysis of Generalized Power Method
Proposition 2 (Convergence Rate of Generalized Power Method)

Let α > β > 0 be fixed such that
√
α−
√
β >
√

2. Suppose that the x0 in
Algorithm 1 satisfies ‖x0‖2 =

√
n and ‖x0 − x∗‖2 .

√
n/log n. Then, it holds

with probability at least 1− n−Ω(1) that

‖xk − x∗‖2 ≤ ‖x0 − x∗‖2/(log n)k/2. (4)

• Note that ‖x0 − x∗‖2 ≤ ‖x0 −
√
nu1‖2 + ‖

√
nu1 − x∗‖2 .

√
n/ log n.

Lemma 5 (One-step Convergence of Generalized Power Iterations)

For any fixed α > β > 0 such that
√
α−
√
β >
√

2, the following event
happens with probability at least 1− n−Ω(1): for all x ∈ {±1}n such that
‖x − x∗‖2 ≤ 2, it holds that

Bx/|Bx | = x∗. (5)

• This lemma indicates that the GPM exhibits finite termination.

• If ‖x0 − x∗‖2/(log n)Ng/2 ≤ 2, by (4), we have ‖xNg − x∗‖2 ≤ 2. Then,
xNg +1 = x∗. One can verify Ng = O(log n/ log log n).
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Phase Transition and Computation Efficiency
• Benchmark methods:

• SDP-based approach in Amini et al. (2018) solved by ADMM.

• Manifold optimization (MFO) based approach in Bandeira et al.
(2016) solved by manifold gradient descent (MGD) method.

• Spectral clustering approach in Abbe et al. (2017) solved by Matlab
function eigs.

• Parameters setting:

• n = 300; α and β vary from 0 to 30 and 0 to 10, with increments 0.5
and 0.4, respectively.

• For fixed (α, β), we generate 40 instances and calculate the ratio of
exact recovery.
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Figure: Phase transition: the x-axis is β, the y -axis is α, and darker pixels represent
lower empirical probability of success. The red curve is

√
α−
√
β =
√

2.



Convergence Performance

• Parameters setting:

• α = 10, β = 2.

• n = 1000, 5000, 10000.
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Figure: Convergence performance: the x-axis is number of iterations, the y -axis for

GPM is ‖xkxkT − x∗x∗T ‖F , and the y -axis for MGD is ‖QkQkT − x∗x∗T ‖F , where
xk and Qk are the iterates generated in the k-th iteration of GPM and MGD,
respectively.
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Conclusions

1 We propose a two-stage iterative algorithm to solve the problem of
exact community recovery in the binary symmetric SBM:

(i) 1st-stage: power method,

(ii) 2nd-stage: generalized power method.

2 We show that the proposed method can achieve exact recovery at
the information-theoretic limit within Õ(n) time complexity.

3 Numerical experiments demonstrate that the proposed approach has
strong recovery performance and is highly efficient.


	Overview
	Introduction
	Main Results
	Experimental Results
	Conclusions

