# A Nearly-Linear Time Algorithm for Exact Community Recovery in Stochastic Block Model

PENG WANG<sup>1</sup>, ZIRUI ZHOU<sup>2</sup>, ANTHONY MAN-CHO SO<sup>1</sup>

<sup>1</sup>Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

<sup>2</sup>Department of Mathematics, Hong Kong Baptist University

June 14, 2020

(日)

**1** Overview

**2** Introduction

**3** Main Results

**4** Experimental Results

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

**5** Conclusions

#### **1** Overview

**2** Introduction

**3** Main Results

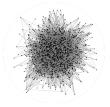
**4** Experimental Results

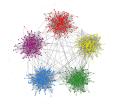
**6** Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## **Community Detection**

- Community detection refers to the problem of inferring similarity classes of vertices (i.e., communities) in a network by observing their local interactions (Abbe 2017); see the below graphs.
- Broad applications in machine learning, biology, social science and many areas.
- Exact recovery requires to identify the entire partition correctly.





◆□ → ◆□ → ◆三 → ◆三 → □

### **Overview**

- **Problem**: exactly recover the communities in the binary symmetric stochastic block model (SBM), where *n* vertices are partitioned into two equal-sized communities and the vertices are connected with probability  $p = \alpha \log(n)/n$  within communities and  $q = \beta \log(n)/n$  across communities.
- Goal: propose an efficient algorithm that achieves exact recovery at the information-theoretic limit, i.e., √α − √β > √2.
- **Proposed Method**: a two-stage iterative algorithm:

(i) 1st-stage: power method, coarse estimate,

(ii) 2nd-stage: generalized power method, refinement.

• **Theoretic Results**: the proposed method can achieve exact recovery at the information-theoretic limit within  $\tilde{O}(n)$  time complexity.

#### **1** Overview

#### **2** Introduction

**3** Main Results

**4** Experimental Results





### **Stochastic Block Model**

Given *n* nodes in two equal-sized clusters, we denote by  $\mathbf{x}^*$  its true community structures, e.g., for every  $i \in [n]$ ,  $x_i^* = 1$  if the node *i* belongs to the first cluster and  $x_i^* = -1$  if it belongs to the second one.

#### Model 1 (Binary symmetric SBM)

The elements  $\{a_{ij} : 1 \le i \le j \le n\}$  of **A** are generated independently by

$$\mathbf{a}_{ij} \sim egin{cases} \mathbf{Bern}(p), & \textit{if} \ x_i^* x_j^* = 1, \ \mathbf{Bern}(q), & \textit{if} \ x_i^* x_j^* = -1 \end{cases}$$

where

$$p = rac{lpha \log n}{n}$$
 and  $q = rac{eta \log n}{n}$ 

for some constants  $\alpha > \beta > 0$ . Besides, we have  $a_{ij} = a_{ji}$  for all  $1 \le j < i \le n$ .

The problem of achieving exact recovery is to develop efficient methods that can find  $x^*$  or  $-x^*$  with high probability given the adjacency matrix **A**.

### **Phase Transition**

The maximum likelihood (ML) estimator of  $x^*$  in the binary symmetric SBM is the solution of the following problem:

$$\max\left\{\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}: \ \boldsymbol{1}_{n}^{T}\boldsymbol{x}=0, \ x_{i}=\pm 1, \ i=1,\ldots,n\right\}.$$
(1)

#### Theorem 1 (Abbe et al. (2016), Mossel et al. (2014))

In the binary symmetric SBM, exact recovery is impossible if  $\sqrt{\alpha} - \sqrt{\beta} < \sqrt{2}$ , while it is possible and can be achieved by the ML estimator if  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ .

In literature,  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$  is called the information-theoretic limit.

**Question:** Is it possible to develop efficient methods for achieving exact recovery at the information-theoretic limit?

### **Related Works**

| Table: | Methods | above | the | information | -theoretic limit |
|--------|---------|-------|-----|-------------|------------------|
|--------|---------|-------|-----|-------------|------------------|

| Authors               | Methods        | Time complexity | Recovery bounds                            |
|-----------------------|----------------|-----------------|--------------------------------------------|
| Boppana, 1987         | spectral algo. | polynomial time | $(\alpha - \beta)^2/(\alpha + \beta) > 72$ |
| McSherry, 2001        | spectral algo. | polynomial time | $(lpha-eta)^2/(lpha+eta)>$ 64              |
| Abbe et al., 2016     | SDP            | polynomial time | $3(lpha-eta)^2>24(lpha+eta)+8(lpha-eta)$   |
| Bandeira et al., 2016 | manifold opti. | polynomial time | $(p-q)/\sqrt{p+q} \ge cn^{-1/6}$           |

Table: Methods at the information-theoretic limit

| Authors            | Methods         | Time complexity    | Recovery bounds                       |
|--------------------|-----------------|--------------------|---------------------------------------|
| Hajek et al., 2016 | SDP             | polynomial time    | $\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$ |
| Abbe et al., 2017  | spectral algo.  | polynomial time    | $\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$ |
| Gao et al., 2017   | two-stage algo. | polynomial time    | $\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$ |
| Our paper          | two-stage algo. | nearly-linear time | $\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$ |

**1** Overview

**2** Introduction

**3** Main Results

**4** Experimental Results



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

# Algorithm

 $\label{eq:algorithm} A \mbox{ Two-Stage Algorithm for Exact Recovery}$ 

1: Input: adjacency matrix 
$$A$$
, positive integer  $N$   
2: set  $\rho \leftarrow \mathbf{1}_n^T A \mathbf{1}_n / n^2$  and  $B \leftarrow A - \rho E_n$   
3: choose  $\mathbf{y}^0$  randomly with uniform distribution over the unit sphere  
4: for  $k = 1, 2, ..., N$  do  
5: set  $\mathbf{y}^k \leftarrow B \mathbf{y}^{k-1} / || B \mathbf{y}^{k-1} ||_2$   
6: end for  
7: set  $\mathbf{x}^0 \leftarrow \sqrt{n} \mathbf{y}^N$   
8: for  $k = 1, 2, ...$  do  
9: set  $\mathbf{x}^k \leftarrow B \mathbf{x}^{k-1} / || B \mathbf{x}^{k-1} ||_2$   
10: if  $\mathbf{x}^k = \mathbf{x}^{k-1}$  then  
11: terminate and return  $\mathbf{x}^k$  stopping criteria  
12: end if  
13: end for

For any  $oldsymbol{v} \in \mathbb{R}^n$ ,  $oldsymbol{v}/|oldsymbol{v}|$  denotes the vector of  $\mathbb{R}^n$  defined as

$$\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)_{i} = \begin{cases} 1, & \text{if } v_{i} \geq 0, \\ -1, & \text{otherwise,} \end{cases} \quad i = 1, \dots, n.$$

# Main Theorem

#### Theorem 2 (Iteration Complexity for Exact Recovery)

Let **A** be randomly generated by Model 1. If  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ , then the following statement holds with probability at least  $1 - n^{-\Omega(1)}$ : Algorithm 1 finds  $x^*$  or  $-x^*$  in  $O(\log n / \log \log n)$  power iterations and  $O(\log n / \log \log n)$  generalized power iterations.

Consequences:

- Algorithm 1 achieves exact recovery at the information-theoretic limit.
- Explicit iteration complexity bound for Algorithm 1 to achieve exact recovery.

The number of non-zero entries in  $\boldsymbol{A}$  is, with high probability, in the order of  $n \log n$ .

#### Corollary 3 (Time Complexity for Exact Recovery)

Let **A** be randomly generated by Model 1. If  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ , then with probability at least  $1 - n^{-\Omega(1)}$ , Algorithm 1 finds  $\mathbf{x}^*$  or  $-\mathbf{x}^*$  in  $O(n \log^2 n)$  time complexity.

## **Analysis of Power Method**

s

#### Proposition 1 (Convergence Rate of Power Method)

Let  $\{y^k\}_{k\geq 0}$  be the sequence generated in the first-stage of Algorithm 1. Then, it holds with probability at least  $1 - n^{-\Omega(1)}$  that

$$\min_{\in \{\pm 1\}} \| \boldsymbol{y}^k - \boldsymbol{s} \boldsymbol{u}_1 \|_2 \lesssim n/(\log n)^{k/2}, \ \forall \ k \ge 0,$$
(2)

where  $u_1$  is an eigenvector of B associated with the largest eigenvalue.

- $\{y^k\}_{k\geq 0}$  with high probability converges at least linearly to  $u_1$ .
- Equation (2) shows that the ratio in the linear rate of convergence tends to 0 as n → ∞.

#### Lemma 4 (Distance from Leading Eigenvalue of *B* to Ground Truth)

It holds with probability at least  $1 - n^{-\Omega(1)}$  that

$$\min_{s\in\{\pm 1\}} \left\|\sqrt{n}\boldsymbol{u}_1 - s\boldsymbol{x}^*\right\|_2 \lesssim \sqrt{n/\log n}.$$
(3)

• It suffices to compute  $\mathbf{y}^{N_p}$  such that  $\min_{s \in \{\pm 1\}} \|\mathbf{y}^{N_p} - s\mathbf{u}_1\|_2 \lesssim 1/\sqrt{\log n}$ . By (2), we have  $N_p = O(\log n / \log \log n)$ .

### **Analysis of Generalized Power Method**

#### Proposition 2 (Convergence Rate of Generalized Power Method)

Let  $\alpha > \beta > 0$  be fixed such that  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ . Suppose that the  $\mathbf{x}^0$  in Algorithm 1 satisfies  $\|\mathbf{x}^0\|_2 = \sqrt{n}$  and  $\|\mathbf{x}^0 - \mathbf{x}^*\|_2 \lesssim \sqrt{n/\log n}$ . Then, it holds with probability at least  $1 - n^{-\Omega(1)}$  that

$$\|\mathbf{x}^{k} - \mathbf{x}^{*}\|_{2} \leq \|\mathbf{x}^{0} - \mathbf{x}^{*}\|_{2} / (\log n)^{k/2}.$$
 (4)

• Note that 
$$\| x^0 - x^* \|_2 \le \| x^0 - \sqrt{n} u_1 \|_2 + \| \sqrt{n} u_1 - x^* \|_2 \lesssim \sqrt{n/\log n}$$

#### Lemma 5 (One-step Convergence of Generalized Power Iterations)

For any fixed  $\alpha > \beta > 0$  such that  $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ , the following event happens with probability at least  $1 - n^{-\Omega(1)}$ : for all  $\mathbf{x} \in \{\pm 1\}^n$  such that  $\|\mathbf{x} - \mathbf{x}^*\|_2 \le 2$ , it holds that

$$Bx/|Bx| = x^*.$$
(5)

- This lemma indicates that the GPM exhibits finite termination.
- If  $||x^0 x^*||_2 / (\log n)^{N_g/2} \le 2$ , by (4), we have  $||x^{N_g} x^*||_2 \le 2$ . Then,  $x^{N_g+1} = x^*$ . One can verify  $N_g = O(\log n / \log \log n)$ .

**1** Overview

**2** Introduction

**3** Main Results

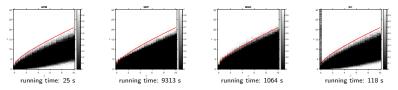
**4** Experimental Results

**6** Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

# **Phase Transition and Computation Efficiency**

- Benchmark methods:
  - SDP-based approach in Amini et al. (2018) solved by ADMM.
  - Manifold optimization (MFO) based approach in Bandeira et al. (2016) solved by manifold gradient descent (MGD) method.
  - Spectral clustering approach in Abbe et al. (2017) solved by Matlab function *eigs*.
- Parameters setting:
  - n = 300;  $\alpha$  and  $\beta$  vary from 0 to 30 and 0 to 10, with increments 0.5 and 0.4, respectively.
  - For fixed (α, β), we generate 40 instances and calculate the ratio of exact recovery.



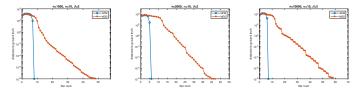
**Figure:** Phase transition: the *x*-axis is  $\beta$ , the *y*-axis is  $\alpha$ , and darker pixels represent lower empirical probability of success. The red curve is  $\sqrt{\alpha} - \sqrt{\beta} = \sqrt{2}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

### **Convergence Performance**

Parameters setting:

• *n* = 1000, 5000, 10000.



**Figure:** Convergence performance: the *x*-axis is number of iterations, the *y*-axis for GPM is  $||\mathbf{x}^k \mathbf{x}^k - \mathbf{x}^* \mathbf{x}^* ^T||_F$ , and the *y*-axis for MGD is  $||\mathbf{Q}^k \mathbf{Q}^k ^T - \mathbf{x}^* \mathbf{x}^* ^T||_F$ , where  $\mathbf{x}^k$  and  $\mathbf{Q}^k$  are the iterates generated in the *k*-th iteration of GPM and MGD, respectively.

**1** Overview

**2** Introduction

**3** Main Results

**4** Experimental Results



### Conclusions

- We propose a two-stage iterative algorithm to solve the problem of exact community recovery in the binary symmetric SBM:
  - (i) 1st-stage: power method,
  - (ii) 2nd-stage: generalized power method.
- 2 We show that the proposed method can achieve exact recovery at the information-theoretic limit within  $\tilde{O}(n)$  time complexity.
- **3** Numerical experiments demonstrate that the proposed approach has strong recovery performance and is highly efficient.