A Nearly-Linear Time Algorithm for Exact Community Recovery in Stochastic Block Model

PENG WANG¹, ZIRUI ZHOU², ANTHONY MAN-CHO SO¹

¹Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

²Department of Mathematics, Hong Kong Baptist University

June 14, 2020

(日)

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

5 Conclusions

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Community Detection

- Community detection refers to the problem of inferring similarity classes of vertices (i.e., communities) in a network by observing their local interactions (Abbe 2017); see the below graphs.
- Broad applications in machine learning, biology, social science and many areas.
- Exact recovery requires to identify the entire partition correctly.

◆□ → ◆□ → ◆三 → ◆三 → □

Overview

- **Problem**: exactly recover the communities in the binary symmetric stochastic block model (SBM), where *n* vertices are partitioned into two equal-sized communities and the vertices are connected with probability $p = \alpha \log(n)/n$ within communities and $q = \beta \log(n)/n$ across communities.
- Goal: propose an efficient algorithm that achieves exact recovery at the information-theoretic limit, i.e., √α − √β > √2.
- **Proposed Method**: a two-stage iterative algorithm:

(i) 1st-stage: power method, coarse estimate,

(ii) 2nd-stage: generalized power method, refinement.

• **Theoretic Results**: the proposed method can achieve exact recovery at the information-theoretic limit within $\tilde{O}(n)$ time complexity.

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

Stochastic Block Model

Given *n* nodes in two equal-sized clusters, we denote by \mathbf{x}^* its true community structures, e.g., for every $i \in [n]$, $x_i^* = 1$ if the node *i* belongs to the first cluster and $x_i^* = -1$ if it belongs to the second one.

Model 1 (Binary symmetric SBM)

The elements $\{a_{ij} : 1 \le i \le j \le n\}$ of **A** are generated independently by

$$\mathbf{a}_{ij} \sim egin{cases} \mathbf{Bern}(p), & \textit{if} \ x_i^* x_j^* = 1, \ \mathbf{Bern}(q), & \textit{if} \ x_i^* x_j^* = -1 \end{cases}$$

where

$$p = rac{lpha \log n}{n}$$
 and $q = rac{eta \log n}{n}$

for some constants $\alpha > \beta > 0$. Besides, we have $a_{ij} = a_{ji}$ for all $1 \le j < i \le n$.

The problem of achieving exact recovery is to develop efficient methods that can find x^* or $-x^*$ with high probability given the adjacency matrix **A**.

Phase Transition

The maximum likelihood (ML) estimator of x^* in the binary symmetric SBM is the solution of the following problem:

$$\max\left\{\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}: \ \boldsymbol{1}_{n}^{T}\boldsymbol{x}=0, \ x_{i}=\pm 1, \ i=1,\ldots,n\right\}.$$
(1)

Theorem 1 (Abbe et al. (2016), Mossel et al. (2014))

In the binary symmetric SBM, exact recovery is impossible if $\sqrt{\alpha} - \sqrt{\beta} < \sqrt{2}$, while it is possible and can be achieved by the ML estimator if $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$.

In literature, $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ is called the information-theoretic limit.

Question: Is it possible to develop efficient methods for achieving exact recovery at the information-theoretic limit?

Related Works

Table:	Methods	above	the	information	-theoretic limit
--------	---------	-------	-----	-------------	------------------

Authors	Methods	Time complexity	Recovery bounds
Boppana, 1987	spectral algo.	polynomial time	$(\alpha - \beta)^2/(\alpha + \beta) > 72$
McSherry, 2001	spectral algo.	polynomial time	$(lpha-eta)^2/(lpha+eta)>$ 64
Abbe et al., 2016	SDP	polynomial time	$3(lpha-eta)^2>24(lpha+eta)+8(lpha-eta)$
Bandeira et al., 2016	manifold opti.	polynomial time	$(p-q)/\sqrt{p+q} \ge cn^{-1/6}$

Table: Methods at the information-theoretic limit

Authors	Methods	Time complexity	Recovery bounds
Hajek et al., 2016	SDP	polynomial time	$\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$
Abbe et al., 2017	spectral algo.	polynomial time	$\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$
Gao et al., 2017	two-stage algo.	polynomial time	$\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$
Our paper	two-stage algo.	nearly-linear time	$\sqrt{lpha} - \sqrt{eta} > \sqrt{2}$

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Algorithm

 $\label{eq:algorithm} A \mbox{ Two-Stage Algorithm for Exact Recovery}$

1: Input: adjacency matrix
$$A$$
, positive integer N
2: set $\rho \leftarrow \mathbf{1}_n^T A \mathbf{1}_n / n^2$ and $B \leftarrow A - \rho E_n$
3: choose \mathbf{y}^0 randomly with uniform distribution over the unit sphere
4: for $k = 1, 2, ..., N$ do
5: set $\mathbf{y}^k \leftarrow B \mathbf{y}^{k-1} / || B \mathbf{y}^{k-1} ||_2$
6: end for
7: set $\mathbf{x}^0 \leftarrow \sqrt{n} \mathbf{y}^N$
8: for $k = 1, 2, ...$ do
9: set $\mathbf{x}^k \leftarrow B \mathbf{x}^{k-1} / || B \mathbf{x}^{k-1} ||_2$
10: if $\mathbf{x}^k = \mathbf{x}^{k-1}$ then
11: terminate and return \mathbf{x}^k stopping criteria
12: end if
13: end for

For any $oldsymbol{v} \in \mathbb{R}^n$, $oldsymbol{v}/|oldsymbol{v}|$ denotes the vector of \mathbb{R}^n defined as

$$\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)_{i} = \begin{cases} 1, & \text{if } v_{i} \geq 0, \\ -1, & \text{otherwise,} \end{cases} \quad i = 1, \dots, n.$$

Main Theorem

Theorem 2 (Iteration Complexity for Exact Recovery)

Let **A** be randomly generated by Model 1. If $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, then the following statement holds with probability at least $1 - n^{-\Omega(1)}$: Algorithm 1 finds x^* or $-x^*$ in $O(\log n / \log \log n)$ power iterations and $O(\log n / \log \log n)$ generalized power iterations.

Consequences:

- Algorithm 1 achieves exact recovery at the information-theoretic limit.
- Explicit iteration complexity bound for Algorithm 1 to achieve exact recovery.

The number of non-zero entries in \boldsymbol{A} is, with high probability, in the order of $n \log n$.

Corollary 3 (Time Complexity for Exact Recovery)

Let **A** be randomly generated by Model 1. If $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, then with probability at least $1 - n^{-\Omega(1)}$, Algorithm 1 finds \mathbf{x}^* or $-\mathbf{x}^*$ in $O(n \log^2 n)$ time complexity.

Analysis of Power Method

s

Proposition 1 (Convergence Rate of Power Method)

Let $\{y^k\}_{k\geq 0}$ be the sequence generated in the first-stage of Algorithm 1. Then, it holds with probability at least $1 - n^{-\Omega(1)}$ that

$$\min_{\in \{\pm 1\}} \| \boldsymbol{y}^k - \boldsymbol{s} \boldsymbol{u}_1 \|_2 \lesssim n/(\log n)^{k/2}, \ \forall \ k \ge 0,$$
(2)

where u_1 is an eigenvector of B associated with the largest eigenvalue.

- $\{y^k\}_{k\geq 0}$ with high probability converges at least linearly to u_1 .
- Equation (2) shows that the ratio in the linear rate of convergence tends to 0 as n → ∞.

Lemma 4 (Distance from Leading Eigenvalue of *B* to Ground Truth)

It holds with probability at least $1 - n^{-\Omega(1)}$ that

$$\min_{s\in\{\pm 1\}} \left\|\sqrt{n}\boldsymbol{u}_1 - s\boldsymbol{x}^*\right\|_2 \lesssim \sqrt{n/\log n}.$$
(3)

• It suffices to compute \mathbf{y}^{N_p} such that $\min_{s \in \{\pm 1\}} \|\mathbf{y}^{N_p} - s\mathbf{u}_1\|_2 \lesssim 1/\sqrt{\log n}$. By (2), we have $N_p = O(\log n / \log \log n)$.

Analysis of Generalized Power Method

Proposition 2 (Convergence Rate of Generalized Power Method)

Let $\alpha > \beta > 0$ be fixed such that $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$. Suppose that the \mathbf{x}^0 in Algorithm 1 satisfies $\|\mathbf{x}^0\|_2 = \sqrt{n}$ and $\|\mathbf{x}^0 - \mathbf{x}^*\|_2 \lesssim \sqrt{n/\log n}$. Then, it holds with probability at least $1 - n^{-\Omega(1)}$ that

$$\|\mathbf{x}^{k} - \mathbf{x}^{*}\|_{2} \leq \|\mathbf{x}^{0} - \mathbf{x}^{*}\|_{2} / (\log n)^{k/2}.$$
 (4)

• Note that
$$\| x^0 - x^* \|_2 \le \| x^0 - \sqrt{n} u_1 \|_2 + \| \sqrt{n} u_1 - x^* \|_2 \lesssim \sqrt{n/\log n}$$

Lemma 5 (One-step Convergence of Generalized Power Iterations)

For any fixed $\alpha > \beta > 0$ such that $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, the following event happens with probability at least $1 - n^{-\Omega(1)}$: for all $\mathbf{x} \in \{\pm 1\}^n$ such that $\|\mathbf{x} - \mathbf{x}^*\|_2 \le 2$, it holds that

$$Bx/|Bx| = x^*.$$
(5)

- This lemma indicates that the GPM exhibits finite termination.
- If $||x^0 x^*||_2 / (\log n)^{N_g/2} \le 2$, by (4), we have $||x^{N_g} x^*||_2 \le 2$. Then, $x^{N_g+1} = x^*$. One can verify $N_g = O(\log n / \log \log n)$.

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

6 Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Phase Transition and Computation Efficiency

- Benchmark methods:
 - SDP-based approach in Amini et al. (2018) solved by ADMM.
 - Manifold optimization (MFO) based approach in Bandeira et al. (2016) solved by manifold gradient descent (MGD) method.
 - Spectral clustering approach in Abbe et al. (2017) solved by Matlab function *eigs*.
- Parameters setting:
 - n = 300; α and β vary from 0 to 30 and 0 to 10, with increments 0.5 and 0.4, respectively.
 - For fixed (α, β), we generate 40 instances and calculate the ratio of exact recovery.

Figure: Phase transition: the *x*-axis is β , the *y*-axis is α , and darker pixels represent lower empirical probability of success. The red curve is $\sqrt{\alpha} - \sqrt{\beta} = \sqrt{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Convergence Performance

Parameters setting:

• *n* = 1000, 5000, 10000.

Figure: Convergence performance: the *x*-axis is number of iterations, the *y*-axis for GPM is $||\mathbf{x}^k \mathbf{x}^k - \mathbf{x}^* \mathbf{x}^* ^T||_F$, and the *y*-axis for MGD is $||\mathbf{Q}^k \mathbf{Q}^k ^T - \mathbf{x}^* \mathbf{x}^* ^T||_F$, where \mathbf{x}^k and \mathbf{Q}^k are the iterates generated in the *k*-th iteration of GPM and MGD, respectively.

1 Overview

2 Introduction

3 Main Results

4 Experimental Results

Conclusions

- We propose a two-stage iterative algorithm to solve the problem of exact community recovery in the binary symmetric SBM:
 - (i) 1st-stage: power method,
 - (ii) 2nd-stage: generalized power method.
- 2 We show that the proposed method can achieve exact recovery at the information-theoretic limit within $\tilde{O}(n)$ time complexity.
- **3** Numerical experiments demonstrate that the proposed approach has strong recovery performance and is highly efficient.