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Definitions



Discrete Distributions

Discrete support set X
{heads, tails} = {h, t} {...,-1,0,1,...} =Z
Distribution p over X, probability p, for z € X
Pe20  YyexPa=1
p=(pn,p)  pn=6,p =4
P collection of distributions
Px all distributions over X
P 1) = {(pn.pe)} = {(:6,.4), (4, .6), (.5,.5),(0,1),...}
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Distribution Property

f:P->R
Maps distribution to real value
Shannon entropy H(p) >z Pz log plz
Rényi entropy H,(p) ﬁ log (X2 p%)
Support size S(p) Y lp.50
Support coverage | Sp(p) | X(1—(1-pz)™)

Expected # dist

inct symbols in m samples

Distance to fixed ¢

Ly(p)

Xz h7x _'QI|

Highest probability

max(p)

max {p,:rxeX}

Many applications
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Property Estimation

Unknown: pe P
Given: property f and samples X" ~p
Estimate: f(p)
Entropy of English words
Given: X = {English words}, unknown: p, estimate: H(p)
# species in habitat
Given: X = {bird species}, unknown: p, estimate: S(p)

How to estimate f(p) when p is unknown?
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Estimators
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Learn from Examples

Observe n independent samples X™ = X1,..., X, ~p
Reveal information about p

Estimate f(p)

Estimator: f': X" - R

Estimate for f(p): f&=H(X™)

Simplest estimators?
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Empirical (Plug-In) Estimator

N, # times x appears in X" ~p
e - N
FEMP(X™) = f(p*™P(X™)) ak.a. MLE estimator in literature
Advantages
plug-and-play: simple two steps
universal: applies to all properties
intuitive and stable

Best-known, most-used {distribution, property} estimator

Performance?
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Mean Absolute Error (MAE)

Classical Alternative to PAC Formulation

Absolute error  |f*H(X™) - f(p)|

Lest(p,n) = Exn.p [f&(X™) - f(p)| mean absolute error
Ljest (P, n) = maxpep L pest(p,n) worst-case MAE over P
L(P,n) = min fest L est(P,n) min-max MAE over P

MSE - similar definitions, similar results, but slightly more complex expressions
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Prior Results
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Abbreviation

if | X is finite, write
|X]=Fk
Px = Ay, the k-dimensional standard simplex

Ay = {p: pp2> % or p, =0, Va} for support size
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Prior Work: Empirical and Min-Max MAEs

References: P03, VV1la/b, WY14/19, JVHW14, AOST14, OSW16, JHW16, ADOS17

‘ Property ‘ Base function ‘ L emp (Ag;,m) ‘ L(Ag,n) ‘
Entropy * pzlog p% n log: n lfg n logf
Supp. coverage? | (1-(1-p,)™) mexp(—@(ﬁ)) mexp(—@(%))
Power sum 3 4 ()" ac (0, %] ”L“ W
p(x)?, ae(%,l) n’fy +kl;j Wﬁ-klf
Dist. to fixed ¢ ° Iz = 4| DINSVES St/ i
Support size ° Lp(ays0 kexp( @(”)) kexp (—@(\/"12—""))

*n to nlogn when comparing the worst-case performances

Yn > k for empirical; n 2 k/log k for minimax
2k = 00: n 2 m for empirical; n 2 m/logm for minimax
*ae (0,31 nz kY™ for empirical; n 2 L

logk

and log k 2 logn for minimax

for minimax

fae(3,1):nz kY for empirical; n 2 g
5additlonal assumptions required, see JHW18

®consider A,/ instead of Ay; klogk 2 n 2 k/logk for minimax .
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Beyond the Min-Max Approach

Min-max approach is overly pessimistic: practical distributions
often possess nice structures and are rarely the worst possible

* Derive “competitive” estimators
— needs no knowledge on distribution structures, yet adaptive to the
simplicity of underlying distributions

* Achieve n to nlogn “amplification”

— distribution by distribution, the performance of our estimator with
n samples is as good as that of the empirical with nlogn
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Instance-Optimal Property Estimation

For a broad class of properties, we derive an “instance-optimal"
estimator which does as well with n samples as the empirical
estimator would do with nlogn, for every distribution.
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Example: Shannon Entropy



Shannon Entropy

Theorem 1  Estimator /™" such that for any € <1, n, and p,

Lfnew (p, n) - Lfemp (p, ENn log n) S g

Comments
f™" requires only X™ and e, and runs in near-linear time
log n amplification factor is optimal
logn>10 for n>22,027 — “order-of-magnitude improvement”

€ can be a vanishing function of n

finite support Sy, then e improves to € A (% + no—hg)
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Simple Implications

Empirical entropy estimator
— has been studied for a long time
G. A. Miller, “Note on the bias of information estimates”, 1955.

— much easier to analyze compared to minimax estimators

* Our result holds on a distribution level, hence strengthens many
results derived in the past half-century, in a unified manner

— large-alphabet regime n =o(k/logk)

L(Apn) < (1+o(1))10g(1+ Fol )

nlogn
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Large-Alphabet Entropy Estimation

Proof of L gemp (Ag,n) < (1+0(1))log (1 + %) for n = o(k)
— absolute bias [P03]
0< H(p) -EH(p*™) = EDwi(p°™ | p) < Elog(1 + x*(p°™ p))
<log(1+Ex*(p™™ | p)) = log(1 + £1)

— mean deviation
. e emp logn
changing a sample modifies f¢™P by < =&=

logn

apply the Efron-Stein inequality — mean deviation < NG

* The proof is very simple compared to that of min-max estimators
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Large-Alphabet Entropy Estimation (Cont’)

Theorem 1 strengthens the result and yields, for n = o(k/logk),

k-1
L(Ag,n) Slog(1+ )+0(1)
nlogn
* Right expression for entropy estimation?
— meaningful since H(p) can be as large as log k
—for n = Q(k/log k), by [VV1la/b, WY14/19, JVHW14]

L(Ag,n) = i+ 182 < og (14 L) 4 o(1)

— should write L(Ag,n) in the latter form
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|deas to Take Away



|deas

Instance-optimal algorithm
worst-case algorithm analysis is pessimistic
modern data science calls for instance-optimal algorithms

better performance on easier instances — data is intrinsically simpler

Data amplification
designing optimal learning algorithms directly might be hard
instead, find a simple algorithm that works

emulate its performance by an algorithm that uses fewer samples
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Thank youl



