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Definitions
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Discrete Distributions

Discrete support set X

{heads, tails} = {h, t} {. . . ,−1,0,1, . . .} = Z

Distribution p over X , probability px for x ∈ X

px ≥ 0 ∑x∈X px = 1

p = (ph, pt) ph = .6, pt = .4

P collection of distributions

PX all distributions over X

P{h, t} = {(ph, pt)} = {(.6, .4), (.4, .6), (.5, .5), (0,1), . . .}
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Distribution Property

f ∶ P → R

Maps distribution to real value

Shannon entropy H(p) ∑x px log 1
px

Rényi entropy Hα(p)
1

1−α log (∑x p
α
x)

Support size S(p) ∑x 1px>0
Support coverage Sm(p) ∑x(1 − (1 − px)

m)

Expected # distinct symbols in m samples
Distance to fixed q Lq(p) ∑x ∣px − qx∣

Highest probability max(p) max{px ∶ x ∈ X}

...

Many applications
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Property Estimation

Unknown: p ∈ P

Given: property f and samples Xn ∼ p

Estimate: f(p)

Entropy of English words

Given: X = {English words}, unknown: p, estimate: H(p)

# species in habitat

Given: X = {bird species}, unknown: p, estimate: S(p)

How to estimate f(p) when p is unknown?

5 / 23



Estimators
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Learn from Examples

Observe n independent samples Xn =X1, . . . ,Xn ∼ p

Reveal information about p

Estimate f(p)

Estimator: f est ∶ X n → R

Estimate for f(p): f est(Xn)

Simplest estimators?
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Empirical (Plug-In) Estimator

Nx # times x appears in Xn ∼ p

pemp
x ∶= Nx

n

f emp(Xn) = f(pemp(Xn)) a.k.a. MLE estimator in literature

Advantages

plug-and-play: simple two steps

universal: applies to all properties

intuitive and stable

Best-known, most-used {distribution, property} estimator

Performance?
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Mean Absolute Error (MAE)

Classical Alternative to PAC Formulation

Absolute error ∣f est(Xn) − f(p)∣

Lfest(p,n) ∶= EXn∼p ∣f est(Xn) − f(p)∣ mean absolute error

Lfest(P, n) ∶= maxp∈P Lfest(p,n) worst-case MAE over P

L(P, n) ∶= minfest Lfest(P, n) min-max MAE over P

MSE – similar definitions, similar results, but slightly more complex expressions
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Prior Results
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Abbreviation

if ∣X ∣ is finite, write

∣X ∣ = k

PX = ∆k, the k-dimensional standard simplex

∆≥1/k ∶= {p ∶ px ≥
1
k or px = 0, ∀x} for support size
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Prior Work: Empirical and Min-Max MAEs

References: P03, VV11a/b,WY14/19, JVHW14, AOST14, OSW16, JHW16, ADOS17

Property Base function Lfemp(∆k, n) L(∆k, n)

Entropy 1 px log 1
px

k
n +

log k√
n

k
n logn +

log k√
n

Supp. coverage2 (1 − (1 − px)
m) m exp (−Θ( n

m
)) m exp (−Θ(

n logn
m ))

Power sum 3 4 p(x)α, α ∈ (0, 12]
k
nα

k
(n logn)α

p(x)α, α ∈ (12 ,1)
k
nα +

k1−α√
n

k
(n logn)α +

k1−α√
n

Dist. to fixed q 5 ∣px − qx∣ ∑x qx∧
√

qx
n ∑x qx∧

√
qx

n logn

Support size 6 1p(x)>0 k exp (−Θ(n
k
)) k exp(−Θ(

√
n logn
k ))

⋆n to n logn when comparing the worst-case performances

1n ≳ k for empirical; n ≳ k/ log k for minimax
2k =∞; n ≳m for empirical; n ≳m/ logm for minimax
3α ∈ (0, 1

2
]: n ≳ k1/α for empirical; n ≳ k1/α

logk
and log k ≳ logn for minimax

4α ∈ (
1
2
,1): n ≳ k1/α for empirical; n ≳ k1/α

logk
for minimax

5additional assumptions required, see JHW18
6consider ∆≥1/k instead of ∆k; k log k ≳ n ≳ k/ log k for minimax
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Data Amplification
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Beyond the Min-Max Approach

Min-max approach is overly pessimistic: practical distributions
often possess nice structures and are rarely the worst possible

⋆ Derive “competitive” estimators

– needs no knowledge on distribution structures, yet adaptive to the
simplicity of underlying distributions

⋆ Achieve n to n logn “amplification”

– distribution by distribution, the performance of our estimator with
n samples is as good as that of the empirical with n logn
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Instance-Optimal Property Estimation

For a broad class of properties, we derive an “instance-optimal"
estimator which does as well with n samples as the empirical
estimator would do with n logn, for every distribution.
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Example: Shannon Entropy
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Shannon Entropy

Theorem 1 Estimator fnew such that for any ε ≤ 1, n, and p,

Lfnew(p,n) −Lfemp(p,εn logn) ≲ ε

Comments

fnew requires only Xn and ε, and runs in near-linear time

logn amplification factor is optimal

logn≥10 for n≥22,027 – “order-of-magnitude improvement”

ε can be a vanishing function of n

finite support Sp, then ε improves to ε ∧ (
Sp
n
+ 1

n0.49 )
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Simple Implications

Empirical entropy estimator
– has been studied for a long time

G. A. Miller, “Note on the bias of information estimates”, 1955.

– much easier to analyze compared to minimax estimators

⋆ Our result holds on a distribution level, hence strengthens many
results derived in the past half-century, in a unified manner

– large-alphabet regime n = o(k/ log k)

L(∆k, n) ≤ (1 + o(1)) log (1 +
k − 1

n logn
)
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Large-Alphabet Entropy Estimation

Proof of Lfemp(∆k, n) ≤ (1+o(1)) log (1 + k−1
n

) for n = o(k)

– absolute bias [P03]

0 ≤H(p) −EH(pemp
) = EDKL(p

emp
∥ p) ≤ E log(1 + χ2

(pemp
∥ p))

≤ log(1 +Eχ2
(pemp

∥ p)) = log(1 + k−1
n

)

– mean deviation
changing a sample modifies f emp by ≤ logn

n

apply the Efron-Stein inequality → mean deviation ≤ logn
√

n

⋆ The proof is very simple compared to that of min-max estimators
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Large-Alphabet Entropy Estimation (Cont’)

Theorem 1 strengthens the result and yields, for n = o(k/ log k),

L(∆k, n) ≤ log (1 +
k − 1

n logn
) + o(1)

⋆ Right expression for entropy estimation?

– meaningful since H(p) can be as large as log k

– for n = Ω(k/ log k), by [VV11a/b,WY14/19, JVHW14]

L(∆k, n) ≍
k

n logn
+

logn
√

k
≍ log (1 + k−1

n logn
) + o(1)

– should write L(∆k, n) in the latter form
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Ideas to Take Away
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Ideas

Instance-optimal algorithm

worst-case algorithm analysis is pessimistic

modern data science calls for instance-optimal algorithms

better performance on easier instances – data is intrinsically simpler

Data amplification

designing optimal learning algorithms directly might be hard

instead, find a simple algorithm that works

emulate its performance by an algorithm that uses fewer samples
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Thank you!
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