Data Amplification: Instance-Optimal Property Estimation

Yi Hao and Alon Orlitsky
\{yih179, alon\}@ucsd.edu

Definitions

Estimators

Prior results
Data amplification
Example: Shannon entropy
Ideas to take away: Instance-optimal algorithm
Data amplification

Definitions

Discrete Distributions

Discrete support set \mathcal{X}

$$
\{\text { heads, tails }\}=\{\mathrm{h}, \mathrm{t}\} \quad\{\ldots,-1,0,1, \ldots\}=\mathbb{Z}
$$

Distribution p over \mathcal{X}, probability p_{x} for $x \in \mathcal{X}$

$$
\begin{aligned}
& p_{x} \geq 0 \quad \sum_{x \in \mathcal{X}} p_{x}=1 \\
& p=\left(p_{\mathrm{h}}, p_{\mathrm{t}}\right) \quad p_{h}=.6, p_{t}=.4
\end{aligned}
$$

\mathcal{P} collection of distributions
$\mathcal{P}_{\mathcal{X}}$ all distributions over \mathcal{X}

$$
\mathcal{P}_{\{\mathrm{h}, \mathrm{t}\}}=\left\{\left(p_{\mathrm{h}}, p_{\mathrm{t}}\right)\right\}=\{(.6, .4),(.4, .6),(.5, .5),(0,1), \ldots\}
$$

Distribution Property

$f: \mathcal{P} \rightarrow \mathbb{R}$
Maps distribution to real value

Shannon entropy	$H(p)$	$\sum_{x} p_{x} \log \frac{1}{p_{x}}$
Rényi entropy	$H_{\alpha}(p)$	$\frac{1}{1-\alpha} \log \left(\sum_{x} p_{x}^{\alpha}\right)$
Support size	$S(p)$	$\sum_{x} \mathbb{1}_{p_{x}>0}$
Support coverage	$S_{m}(p)$	$\sum_{x}\left(1-\left(1-p_{x}\right)^{m}\right)$

Expected \# distinct symbols in m samples

Distance to fixed \boldsymbol{q}	$L_{q}(p)$	$\sum_{x}\left\|p_{x}-q_{x}\right\|$
Highest probability	$\max (p)$	$\max \left\{p_{x}: x \in \mathcal{X}\right\}$
\ldots		

Many applications

Property Estimation

Unknown: $p \in \mathcal{P}$
Given: property f and samples $X^{n} \sim p$
Estimate: $f(p)$
Entropy of English words
Given: $\mathcal{X}=\{$ English words $\}$, unknown: p, estimate: $H(p)$
\# species in habitat
Given: $\mathcal{X}=\{$ bird species $\}, \quad$ unknown: p, \quad estimate: $S(p)$
How to estimate $f(p)$ when p is unknown?

Estimators

Observe n independent samples $X^{n}=X_{1}, \ldots, X_{n} \sim p$
Reveal information about p
Estimate $f(p)$
Estimator: $f^{\text {est }}: \mathcal{X}^{n} \rightarrow \mathbb{R}$
Estimate for $f(p): f^{\text {est }}\left(X^{n}\right)$
Simplest estimators?

Empirical (Plug-In) Estimator

$N_{x} \#$ times x appears in $X^{n} \sim p$
$p_{x}^{\mathrm{emp}}:=\frac{N_{x}}{n}$
$f^{\mathrm{emp}}\left(X^{n}\right)=f\left(p^{\mathrm{emp}}\left(X^{n}\right)\right)$ a.k.a. MLE estimator in literature
Advantages
plug-and-play: simple two steps
universal: applies to all properties
intuitive and stable
Best-known, most-used \{distribution, property\} estimator
Performance?

Mean Absolute Error (MAE)

Classical Alternative to PAC Formulation
Absolute error $\left|f^{\text {est }}\left(X^{n}\right)-f(p)\right|$
$L_{\text {fest }}(p, n):=\mathbb{E}_{X^{n} \sim p}\left|f^{\text {est }}\left(X^{n}\right)-f(p)\right|$ mean absolute error
$L_{f \text { est }}(\mathcal{P}, n):=\max _{p \in \mathcal{P}} L_{f \text { est }}(p, n)$ worst-case MAE over \mathcal{P}
$L(\mathcal{P}, n):=\min _{\text {fest }} L_{f \text { est }}(\mathcal{P}, n)$ min-max MAE over \mathcal{P}
MSE - similar definitions, similar results, but slightly more complex expressions

Prior Results

Abbreviation

if $|\mathcal{X}|$ is finite, write

$$
|\mathcal{X}|=k
$$

$\mathcal{P}_{\mathcal{X}}=\Delta_{k}$, the k-dimensional standard simplex
$\Delta_{\geq 1 / k}:=\left\{p: p_{x} \geq \frac{1}{k}\right.$ or $\left.p_{x}=0, \forall x\right\}$ for support size

Prior Work: Empirical and Min-Max MAEs

References: P03, VV11a/b, WY14/19, JVHW14, AOST14, OSW16, JHW16, ADOS17

Property	Base function	$L_{\text {emp }}\left(\Delta_{k}, n\right)$	$L\left(\Delta_{k}, n\right)$
Entropy 1	$p_{x} \log \frac{1}{p_{x}}$	$\frac{k}{n}+\frac{\log k}{\sqrt{n}}$	$\frac{k}{n \log n}+\frac{\log k}{\sqrt{n}}$
Supp. coverage 2	$\left(1-\left(1-p_{x}\right)^{m}\right)$	$m \exp \left(-\Theta\left(\frac{n}{m}\right)\right)$	$m \exp \left(-\Theta\left(\frac{n \log n}{m}\right)\right)$
Power sum $^{34}{ }^{4}$	$p(x)^{\alpha}, \alpha \in\left(0, \frac{1}{2}\right]$	$\frac{k}{n^{\alpha}}$	$\frac{k}{(n \log n)^{\alpha}}$
	$p(x)^{\alpha}, \alpha \in\left(\frac{1}{2}, 1\right)$	$\frac{k}{n^{\alpha}}+\frac{k^{1-\alpha}}{\sqrt{n}}$	$\frac{k}{(n \log n)^{\alpha}+\frac{k^{1-\alpha}}{\sqrt{n}}}$
Dist. to fixed \boldsymbol{q}^{5}	$\left\|p_{x}-q_{x}\right\|$	$\sum_{x} q_{x} \wedge \sqrt{\frac{q_{x}}{n}}$	$\sum_{x} q_{x} \wedge \sqrt{\frac{q_{x}}{n \log n}}$
Support size 6	$\mathbb{1}_{p(x)>0}$	$k \exp \left(-\Theta\left(\frac{n}{k}\right)\right)$	$k \exp \left(-\Theta\left(\sqrt{\frac{n \log n}{k}}\right)\right)$

$\star \boldsymbol{n}$ to $\boldsymbol{n} \log \boldsymbol{n}$ when comparing the worst-case performances
${ }^{1} n \gtrsim k$ for empirical; $n \gtrsim k / \log k$ for minimax
${ }^{2} k=\infty ; n \gtrsim m$ for empirical; $n \gtrsim m / \log m$ for minimax
${ }^{3} \alpha \in\left(0, \frac{1}{2}\right]: n \gtrsim k^{1 / \alpha}$ for empirical; $n \gtrsim \frac{k^{1 / \alpha}}{\log k}$ and $\log k \gtrsim \log n$ for minimax
${ }^{4} \alpha \in\left(\frac{1}{2}, 1\right): n \gtrsim k^{1 / \alpha}$ for empirical; $n \gtrsim \frac{k^{1 / \alpha}}{\log k}$ for minimax
${ }^{5}$ additional assumptions required, see JHW18
${ }^{6}$ consider $\Delta_{\geq 1 / k}$ instead of $\Delta_{k} ; k \log k \gtrsim n \gtrsim k / \log k$ for minimax

Data Amplification

Beyond the Min-Max Approach

Min-max approach is overly pessimistic: practical distributions often possess nice structures and are rarely the worst possible

* Derive "competitive" estimators
- needs no knowledge on distribution structures, yet adaptive to the simplicity of underlying distributions
* Achieve n to $n \log n$ "amplification"
- distribution by distribution, the performance of our estimator with n samples is as good as that of the empirical with $n \log n$

Instance-Optimal Property Estimation

For a broad class of properties, we derive an "instance-optimal" estimator which does as well with \boldsymbol{n} samples as the empirical estimator would do with $n \log \boldsymbol{n}$, for every distribution.

Example: Shannon Entropy

Shannon Entropy

Theorem 1 Estimator $f^{\text {new }}$ such that for any $\varepsilon \leq 1, n$, and p,

$$
L_{f_{\text {new }}}(p, n)-L_{f \operatorname{emp}}(p, \varepsilon n \log n) \lesssim \varepsilon
$$

Comments
$f^{\text {new }}$ requires only X^{n} and ε, and runs in near-linear time
$\log n$ amplification factor is optimal
$\log n \geq 10$ for $n \geq 22,027$ - "order-of-magnitude improvement"
ε can be a vanishing function of n
finite support S_{p}, then ε improves to $\varepsilon \wedge\left(\frac{S_{p}}{n}+\frac{1}{n^{0.49}}\right)$

Simple Implications

Empirical entropy estimator

- has been studied for a long time
G. A. Miller, "Note on the bias of information estimates", 1955.
- much easier to analyze compared to minimax estimators
* Our result holds on a distribution level, hence strengthens many results derived in the past half-century, in a unified manner
- large-alphabet regime $n=o(k / \log k)$

$$
L\left(\Delta_{k}, n\right) \leq(1+o(1)) \log \left(1+\frac{k-1}{n \log n}\right)
$$

Large-Alphabet Entropy Estimation

Proof of $L_{f \operatorname{emp}}\left(\Delta_{k}, n\right) \leq(1+o(1)) \log \left(1+\frac{k-1}{n}\right)$ for $n=o(k)$

- absolute bias [P03]

$$
\begin{aligned}
0 & \leq H(p)-\mathbb{E} H\left(p^{\mathrm{emp}}\right)=\mathbb{E} \mathrm{D}_{\mathrm{KL}}\left(p^{\mathrm{emp}} \| p\right) \leq \mathbb{E} \log \left(1+\chi^{2}\left(p^{\mathrm{emp}} \| p\right)\right) \\
& \leq \log \left(1+\mathbb{E} \chi^{2}\left(p^{\mathrm{emp}} \| p\right)\right)=\log \left(1+\frac{k-1}{n}\right)
\end{aligned}
$$

- mean deviation changing a sample modifies f^{emp} by $\leq \frac{\log n}{n}$ apply the Efron-Stein inequality \rightarrow mean deviation $\leq \frac{\log n}{\sqrt{n}}$
* The proof is very simple compared to that of min-max estimators

Large-Alphabet Entropy Estimation (Cont')

Theorem 1 strengthens the result and yields, for $n=o(k / \log k)$,

$$
L\left(\Delta_{k}, n\right) \leq \log \left(1+\frac{k-1}{n \log n}\right)+o(1)
$$

* Right expression for entropy estimation?
- meaningful since $H(p)$ can be as large as $\log k$
- for $n=\Omega(k / \log k)$, by [VV11a/b, WY14/19, JVHW14]

$$
L\left(\Delta_{k}, n\right) \asymp \frac{k}{n \log n}+\frac{\log n}{\sqrt{k}} \asymp \log \left(1+\frac{k-1}{n \log n}\right)+o(1)
$$

- should write $L\left(\Delta_{k}, n\right)$ in the latter form

Ideas to Take Away

Instance-optimal algorithm

worst-case algorithm analysis is pessimistic
modern data science calls for instance-optimal algorithms
better performance on easier instances - data is intrinsically simpler

Data amplification

designing optimal learning algorithms directly might be hard instead, find a simple algorithm that works
emulate its performance by an algorithm that uses fewer samples

Thank you!

