Data Amplification: Instance-Optimal Property Estimation

> Yi Hao and Alon Orlitsky {yih179, alon}@ucsd.edu

Outline

Definitions

Estimators

Prior results

Data amplification

Example: Shannon entropy

Ideas to take away: Instance-optimal algorithm

Data amplification

Definitions

Discrete Distributions

Discrete support set \mathcal{X}

 $\{\text{heads, tails}\} = \{\text{h, t}\} \qquad \{\dots, -1, 0, 1, \dots\} = \mathbb{Z}$

Distribution p over \mathcal{X} , probability p_x for $x \in \mathcal{X}$

$$\begin{split} p_x &\geq 0 \qquad \sum_{x \in \mathcal{X}} p_x = 1 \\ p &= (p_{\mathsf{h}}, p_{\mathsf{t}}) \qquad p_h = .6, \ p_t = .4 \end{split}$$

 ${\cal P}$ collection of distributions

 $\mathcal{P}_{\mathcal{X}}$ all distributions over \mathcal{X}

 $\mathcal{P}_{\{\mathsf{h}, \mathsf{t}\}} = \{(p_{\mathsf{h}}, p_{\mathsf{t}})\} = \{(.6, .4), (.4, .6), (.5, .5), (0, 1), \ldots\}$

Distribution Property

 $f:\mathcal{P}\to\mathbb{R}$

Maps distribution to real value

Shannon entropy	H(p)	$\sum_x p_x \log \frac{1}{p_x}$		
Rényi entropy	$H_{\alpha}(p)$	$\frac{1}{1-\alpha}\log\left(\sum_x p_x^{\alpha}\right)$		
Support size	S(p)	$\sum_{x} \mathbb{1}_{p_x > 0}$		
Support coverage	$S_m(p)$	$\sum_x (1 - (1 - p_x)^m)$		
Expected $\#$ distinct symbols in m samples				
Distance to fixed q	$L_q(p)$	$\sum_{x} p_x - q_x $		
Highest probability	$\max(p)$	$\max\left\{p_x: x \in \mathcal{X}\right\}$		

Many applications

Property Estimation

```
Unknown: p \in \mathcal{P}

Given: property f and samples X^n \sim p

Estimate: f(p)

Entropy of English words

Given: \mathcal{X} = \{\text{English words}\}, \text{ unknown: } p, \text{ estimate: } H(p)

# species in habitat

Given: \mathcal{X} = \{\text{bird species}\}, \text{ unknown: } p, \text{ estimate: } S(p)
```

How to estimate f(p) when p is unknown?

Estimators

Learn from Examples

Observe *n* independent samples $X^n = X_1, ..., X_n \sim p$ Reveal information about *p* Estimate f(p)Estimator: $f^{\text{est}} : \mathcal{X}^n \to \mathbb{R}$ Estimate for f(p): $f^{\text{est}}(X^n)$ Simplest estimators?

Empirical (Plug-In) Estimator

 $N_x \ \# \text{ times } x \text{ appears in } X^n \sim p$ $p_x^{emp} \coloneqq \frac{N_x}{n}$ $f^{emp}(X^n) = f(p^{emp}(X^n))$ a.k.a. MLE estimator in literature Advantages

plug-and-play: simple two steps universal: applies to all properties intuitive and stable

Best-known, most-used {distribution, property} estimator

Performance?

Mean Absolute Error (MAE)

Classical Alternative to PAC Formulation Absolute error $|f^{est}(X^n) - f(p)|$ $L_{f^{est}}(p,n) \coloneqq \mathbb{E}_{X^n \sim p} |f^{est}(X^n) - f(p)|$ mean absolute error $L_{f^{est}}(\mathcal{P}, n) \coloneqq \max_{p \in \mathcal{P}} L_{f^{est}}(p, n)$ worst-case MAE over \mathcal{P} $L(\mathcal{P}, n) \coloneqq \min_{f^{est}} L_{f^{est}}(\mathcal{P}, n)$ min-max MAE over \mathcal{P}

MSE - similar definitions, similar results, but slightly more complex expressions

Prior Results

Abbreviation

if $\left|\mathcal{X}\right|$ is finite, write

$$|\mathcal{X}| = k$$

 $\mathcal{P}_{\mathcal{X}} = \Delta_k$, the k-dimensional standard simplex
 $\Delta_{\geq 1/k} := \{p: \ p_x \geq \frac{1}{k} \text{ or } p_x = 0, \ \forall x\} \text{ for support size}$

Prior Work: Empirical and Min-Max MAEs

Property	Base function	$L_{f^{emp}}(\Delta_k, n)$	$L(\Delta_k, n)$
Entropy ¹	$p_x \log \frac{1}{p_x}$	$\frac{k}{n} + \frac{\log k}{\sqrt{n}}$	$\frac{k}{n\log n} + \frac{\log k}{\sqrt{n}}$
Supp. coverage ²	$(1-(1-p_x)^m)$	$m \exp\left(-\Theta\left(\frac{n}{m}\right)\right)$	$m \exp\left(-\Theta\left(\frac{n \log n}{m}\right)\right)$
Power sum ^{3 4}	$p(x)^{lpha}$, $lpha \in (0, \frac{1}{2}]$	$\frac{k}{n^{\alpha}}$	$\frac{k}{(n \log n)^{\alpha}}$
	$p(x)^{\alpha}$, $\alpha \in \left(\frac{1}{2}, 1\right)$	$\frac{k}{n^{\alpha}} + \frac{k^{1-\alpha}}{\sqrt{n}}$	$\frac{k}{(n\log n)^{\alpha}} + \frac{k^{1-\alpha}}{\sqrt{n}}$
Dist. to fixed q ⁵	$ p_x - q_x $	$\sum_x q_x \wedge \sqrt{\frac{q_x}{n}}$	$\sum_x q_x \wedge \sqrt{\frac{q_x}{n \log n}}$
Support size ⁶	$1_{p(x)>0}$	$k \exp\left(-\Theta\left(\frac{n}{k}\right)\right)$	$k \exp\left(-\Theta\left(\sqrt{\frac{n\log n}{k}}\right)\right)$

References: P03, VV11a/b, WY14/19, JVHW14, AOST14, OSW16, JHW16, ADOS17

 $\star n$ to $n\log n$ when comparing the worst-case performances

 $\label{eq:started_st$

Data Amplification

Beyond the Min-Max Approach

Min-max approach is overly pessimistic: practical distributions often possess nice structures and are rarely the worst possible

* Derive "competitive" estimators

- needs no knowledge on distribution structures, yet adaptive to the simplicity of underlying distributions

 \star Achieve n to $n\log n$ "amplification"

– distribution by distribution, the performance of our estimator with n samples is as good as that of the empirical with $n\log n$

Instance-Optimal Property Estimation

For a broad class of properties, we derive an "instance-optimal" estimator which does as well with n samples as the empirical estimator would do with $n \log n$, for every distribution.

Example: Shannon Entropy

Shannon Entropy

Theorem 1 Estimator f^{new} such that for any $\varepsilon \le 1$, n, and p, $L_{f^{\text{new}}}(p,n) - L_{f^{\text{emp}}}(p,\varepsilon n \log n) \le \varepsilon$

Comments

 f^{new} requires only X^n and ε , and runs in near-linear time log n amplification factor is optimal log $n \ge 10$ for $n \ge 22,027$ – "order-of-magnitude improvement" ε can be a vanishing function of n

finite support S_p , then ε improves to $\varepsilon \wedge \left(\frac{S_p}{n} + \frac{1}{n^{0.49}}\right)$

Simple Implications

Empirical entropy estimator

– has been studied for a long time

G. A. Miller, "Note on the bias of information estimates", 1955.

- much easier to analyze compared to minimax estimators

* Our result holds on a *distribution level*, hence strengthens many results derived in the past half-century, in a *unified manner*

- large-alphabet regime $n = o(k/\log k)$

$$L(\Delta_k, n) \le (1 + o(1)) \log\left(1 + \frac{k - 1}{n \log n}\right)$$

Large-Alphabet Entropy Estimation

Proof of $L_{f^{emp}}(\Delta_k, n) \leq (1+o(1))\log(1+\frac{k-1}{n})$ for n = o(k)

– absolute bias [P03]

 $0 \le H(p) - \mathbb{E}H(p^{\mathsf{emp}}) = \mathbb{E} \operatorname{D}_{\mathsf{KL}}(p^{\mathsf{emp}} || p) \le \mathbb{E} \log(1 + \chi^2(p^{\mathsf{emp}} || p))$ $\le \log(1 + \mathbb{E} \chi^2(p^{\mathsf{emp}} || p)) = \log(1 + \frac{k-1}{n})$

- mean deviation changing a sample modifies f^{emp} by $\leq \frac{\log n}{n}$ apply the Efron-Stein inequality \rightarrow mean deviation $\leq \frac{\log n}{\sqrt{n}}$
- * The proof is very simple compared to that of min-max estimators

Large-Alphabet Entropy Estimation (Cont')

Theorem 1 strengthens the result and yields, for $n = o(k/\log k)$,

$$L(\Delta_k, n) \le \log\left(1 + \frac{k-1}{n \log n}\right) + o(1)$$

* Right expression for entropy estimation?

- meaningful since H(p) can be as large as $\log k$

- for
$$n = \Omega(k/\log k)$$
, by [VV11a/b, WY14/19, JVHW14]
 $L(\Delta_k, n) \asymp \frac{k}{n\log n} + \frac{\log n}{\sqrt{k}} \asymp \frac{\log\left(1 + \frac{k-1}{n\log n}\right) + o(1)}{\log n}$

– should write $L(\Delta_k, n)$ in the latter form

Ideas to Take Away

Instance-optimal algorithm

worst-case algorithm analysis is pessimistic

modern data science calls for instance-optimal algorithms

better performance on easier instances - data is intrinsically simpler

Data amplification

designing optimal learning algorithms directly might be hard instead, find a simple algorithm that works emulate its performance by an algorithm that uses fewer samples

Thank you!