Recovery of sparse signals from a mixture of linear samples

Arya Mazumdar Soumyabrata Pal
University of Massachusetts Amherst

June 15, 2020

ICML 2020

A relationship between features and labels

x : feature and y : label.
Consider the tuple (x, y) with $y=f(x)$:

Example: Music Perception

Music Perception

- Cohen 1980
- De Veaux, 1989;
- Viele and Tong, 2002

Application of Mixture of ML Models

- Multi-modal data, Heterogeneous data
- Recent Works: Stadler, Buhlmann, De Geer, 2010; Faria and Soromenho, 2010; Chaganty and Liang, 2013
- Yi, Caramanis, Sanghavi 2014-2016: Algorithms
- An expressive and rich model
- Modeling a complicated relation as a mixture of simple components
- Advantage: Clean theoretical analysis

Semi-supervised Active Learning framework: Advantages

- In this framework, we can carefully design data to query for labels.
- Objective: Recover the parameters of the models with minimum number of queries/samples.
- Advantage:

1. Can avoid millions of parameters used by a deep learning model to fit the data!
2. Learn with significantly less amount of data!
3. We can use crowd-knowledge which is difficult to incorporate in algorithm.

- Crowdsourcing/ Active Learning has become very popular but is expensive (Dasgupta et. al., Freund et. al.)

Mixture of sparse linear regression

- Suppose we have two unknown distinct vectors $\beta^{1}, \beta^{2} \in \mathbb{R}^{n}$ and an oracle $\mathcal{O}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- We assume that β^{1}, β^{2} have k significant entries where $k \ll n$.
- The oracle \mathcal{O} takes input a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ and return noisy output (sample) $y \in \mathbb{R}$:

$$
y=\langle\boldsymbol{x}, \beta\rangle+\zeta
$$

where $\beta \sim u\left\{\beta^{1}, \beta^{2}\right\}$ and $\zeta \sim \mathcal{N}\left(0, \sigma^{2}\right)$ with known σ.

- Generalization of Compressed Sensing

Mixture of sparse linear regression

- We also define the Signal-to-Noise Ratio (SNR) for a query \boldsymbol{x} as:

$$
\operatorname{SNR}(\boldsymbol{x}) \triangleq \frac{\mathbb{E}\left|\left\langle\mathbf{x}, \boldsymbol{\beta}^{1}-\boldsymbol{\beta}^{2}\right\rangle\right|^{2}}{\mathbb{E} \zeta^{2}} \quad \text { and } \quad \operatorname{SNR}=\max _{\boldsymbol{x}} \operatorname{SNR}(\boldsymbol{x})
$$

- Objective: For each $\beta \in\left\{\beta^{1}, \beta^{2}\right\}$, we want to recover $\hat{\beta}$ such that

$$
\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\| \leq c\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{(k)}\right\|+\gamma
$$

where $\boldsymbol{\beta}_{(k)}$ is the best k-sparse approximation of β with minimum queries for a fixed SNR.

Previous and Our results

- First studied by Yin et.al. (2019) who made following assumptions

1. the unknown vectors are exactly k-sparse, i.e., has at most k nonzero entries;
2. $\beta_{j}^{1} \neq \beta_{j}^{2} \quad$ for each $\quad j \in \operatorname{supp} \boldsymbol{\beta}^{1} \cap \operatorname{supp} \boldsymbol{\beta}^{2}$
3. for some $\epsilon>0, \boldsymbol{\beta}^{1}, \boldsymbol{\beta}^{2} \in\{0, \pm \epsilon, \pm 2 \epsilon, \pm 3 \epsilon, \ldots\}^{n}$.
and showed query complexity exponential in σ / ϵ.

- Krishnamurthy et. al. (2019) removed the first two assumptions but their query complexity was still exponential in $(\sigma / \epsilon)^{2 / 3}$.
- We get rid of all assumptions and need a query complexity of

$$
O\left(\frac{k \log n \log ^{2} k}{\log (\sigma \sqrt{\mathrm{SNR}} / \gamma)} \max \left(1, \frac{\sigma^{4}}{\gamma^{4} \sqrt{\mathrm{SNR}}}+\frac{\sigma^{2}}{\gamma^{2}}\right)\right)
$$

which is polynomial in σ.

Insight 1: Compressed Sensing

1. If $\beta^{1}=\beta^{2}$ (single unknown vector), the objective is exactly the same as in Compressed sensing.
2. It is well known (Candes and Tao) that for the following $m \times n$ matrix \boldsymbol{A} with $m=O(k \log n)$,

$$
\boldsymbol{A} \triangleq \frac{1}{\sqrt{m}}\left[\begin{array}{ccc}
\mathcal{N}(0,1) & \mathcal{N}(0,1) & \ldots \\
\vdots & \ddots & \\
\mathcal{N}(0,1) & \ldots & \mathcal{N}(0,1)
\end{array}\right]
$$

using its rows as queries is sufficient in the CS setting.
3. Can we cluster the samples in our framework?

Insight 2: (Gaussian mixtures)

1. For a given $\mathbf{x} \in \mathbb{R}^{n}$, repeating \mathbf{x} as query to the oracle gives us samples which are distributed according to

$$
\frac{1}{2} \mathcal{N}\left(\left\langle\boldsymbol{x}, \boldsymbol{\beta}^{1}\right\rangle, \sigma^{2}\right)+\frac{1}{2} \mathcal{N}\left(\left\langle\boldsymbol{x}, \boldsymbol{\beta}^{2}\right\rangle, \sigma^{2}\right) .
$$

2. With known σ^{2}, how many samples do we need to recover $\left\langle\boldsymbol{x}, \boldsymbol{\beta}^{1}\right\rangle,\left\langle\boldsymbol{x}, \boldsymbol{\beta}^{2}\right\rangle$?

Recover means of Gaussian mixture with same \& known variance

Input: Obtain samples from a mixture of Gaussians \mathcal{M} with two components

$$
\mathcal{M} \triangleq \frac{1}{2} \mathcal{N}\left(\mu_{1}, \sigma^{2}\right)+\frac{1}{2} \mathcal{N}\left(\mu_{2}, \sigma^{2}\right) .
$$

Output: Return $\hat{\mu}_{1}, \hat{\mu}_{2}$.

EM algorithm (Daskalakis et.al. 2017, Xu et.al. 2016)

```
Algorithm \(1 \mathrm{EM}(\mathbf{x}, \sigma, T)\) Estimate the means \(\left\langle\mathbf{x}, \beta^{1}\right\rangle\),
\(\left\langle\mathbf{x}, \beta^{2}\right\rangle\) for a query \(\mathbf{x}\) using EM algorithm
Require: An oracle \(\mathcal{O}\) which when queried with a vector
    \(\mathbf{x} \in \mathbb{R}^{n}\) returns \(\langle\mathbf{x}, \beta\rangle+\mathcal{N}\left(0, \sigma^{2}\right)\) where \(\beta\) is sampled
    uniformly from \(\left\{\beta^{1}, \beta^{2}\right\}\).
    for \(i=1,2, \ldots, T\) do
        Query the oracle \(\mathcal{O}\) with \(\mathbf{x}\) and obtain a response \(y^{i}\).
    end for
    Set the function \(w: \mathbb{R}^{3} \rightarrow \mathbb{R}\) as \(w\left(y, \mu_{1}, \mu_{2}\right)=\)
    \(e^{-\left(y-\mu_{1}\right)^{2} / 2 \sigma^{2}}\left(e^{-\left(y-\mu_{1}\right)^{2} / 2 \sigma^{2}}+e^{-\left(y-\mu_{2}\right)^{2} / 2 \sigma^{2}}\right)^{-1}\).
    Initialize \(\hat{\mu}_{1}^{0}, \hat{\mu}_{2}^{0}\) randomly and \(t=0\).
    while Until Convergence do
        \(\hat{\mu}_{1}^{t+1}=\sum_{i=1}^{T} y_{i} w\left(y_{i}, \hat{\mu}_{1}^{t}, \hat{\mu}_{2}^{t}\right) / \sum_{i=1}^{T} w\left(y_{i}, \hat{\mu}_{1}^{t}, \hat{\mu}_{2}^{t}\right)\).
        \(\hat{\mu}_{2}^{t+1}=\sum_{i=1}^{T} y_{i} w\left(y_{i}, \hat{\mu}_{2}^{t}, \hat{\mu}_{1}^{t}\right) / \sum_{i=1}^{T} w\left(y_{i}, \hat{\mu}_{2}^{t}, \hat{\mu}_{1}^{t}\right)\).
        \(t \leftarrow t+1\).
    end while
    Return \(\hat{\mu}_{1}^{t}, \hat{\mu}_{2}^{t}\)
```


Method of Moments (Hardt and Price 2015)

- Estimate the first and second central moments

Samples from the mixture

$$
y^{1} \quad y^{2} \quad y^{3} \quad y^{4} \quad \cdots \quad y^{T}
$$

Divide into batches

$$
\begin{array}{ll}
\text { Batch 1 } & \hat{M}_{1}=\hat{M}_{1}=\operatorname{match} \mathbf{~ 2} \\
S_{1}^{i} \frac{y^{j}}{t} & \hat{M}_{2}=\operatorname{median}\left(\left\{S_{1}^{i}\right\}_{i=1}^{B}\right) \\
S_{2}^{i}=\sum_{j \in \operatorname{Batch} i} \frac{\left(y^{j}-S_{1}^{i}\right)^{2}}{t-1} &
\end{array}
$$

- Set up system of equations to calculate $\hat{\mu}_{1}, \hat{\mu}_{2}$ where

$$
\hat{\mu}_{1}+\hat{\mu}_{2}=2 \hat{M}_{1},\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{2}=4 \hat{M}_{2}-4 \sigma^{2}
$$

Fit a single Gaussian (Daskalakis et. al. 2017)

Estimate the mean \hat{M}_{1} and return as both $\hat{\mu}_{1}, \hat{\mu}_{2}$

Samples from the mixture

Return average of first and third quartiles

How to choose which algorithm to use

We can design a test to infer the parameter regime correctly.

Stage 1: Denoising

We sample $\boldsymbol{x} \sim \mathcal{N}\left(0, \boldsymbol{I}_{n \times n}\right)$.

- For unknown permutation $\pi:\{1,2\} \rightarrow\{1,2\}, \hat{\mu}_{1}, \hat{\mu}_{2}$ satisfies $\left|\hat{\mu}_{i}-\mu_{\pi(i)}\right| \leq \gamma$.
- We can show that $\mathbb{E}\left(T_{1}+T_{2}\right) \leq O\left(\left(\frac{\sigma^{5}}{\gamma^{4}\left\|\beta^{1}-\boldsymbol{\beta}^{2}\right\|_{2}}+\frac{\sigma^{2}}{\gamma^{2}}\right) \log \eta^{-1}\right)$
- We follow identical steps for $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}$.

Stage 2: Alignment across queries

Stage 3: Cluster \& Recover

- After the denoising and alignment steps, we are able to recover two vectors \boldsymbol{u} and v of length $m=O(k \log n)$ each such that

$$
\left|\boldsymbol{u}[i]-\left\langle\boldsymbol{x}^{i}, \boldsymbol{\beta}^{\pi(1)}\right\rangle\right| \leq 10 \gamma ;\left|\boldsymbol{v}[i]-\left\langle\boldsymbol{x}^{i}, \boldsymbol{\beta}^{\pi(2)}\right\rangle\right| \leq 10 \gamma
$$

for some permutation $\pi:\{1,2\} \rightarrow\{1,2\}$ for all $i \in[m]$ w.p. at least $1-\eta$.

- We now solve the following convex optimization problems to recover $\hat{\beta}^{\pi(1)}, \hat{\beta}^{\pi(2)}$.

$$
\begin{aligned}
& \boldsymbol{A}=\frac{1}{\sqrt{m}}\left[\begin{array}{lllll}
\boldsymbol{x}^{1} & \boldsymbol{x}^{2} & \boldsymbol{x}^{3} & \ldots & \boldsymbol{x}^{m}
\end{array}\right]^{T} \\
& \hat{\boldsymbol{\beta}}^{\pi(1)}=\min _{\boldsymbol{z} \in \mathbb{R}^{n}}\|\boldsymbol{z}\|_{1} \text { s.t. }\left\|\boldsymbol{A} \boldsymbol{z}-\frac{\boldsymbol{u}}{\sqrt{m}}\right\|_{2} \leq 10 \gamma \\
& \hat{\boldsymbol{\beta}}^{\pi(2)}=\min _{\boldsymbol{z} \in \mathbb{R}^{n}}\|\boldsymbol{z}\|_{1} \text { s.t. }\left\|\boldsymbol{A} \boldsymbol{z}-\frac{\boldsymbol{v}}{\sqrt{m}}\right\|_{2} \leq 10 \gamma
\end{aligned}
$$

Simulations

Comparison of ground-truth vectors and recovered vectors

(b) The 100 -dimensional ground truth vectors β^{1} and β^{2} with sparsity $k=5$ plotted in green (left) and the recovered vectors (using Algorithm 8) $\hat{\beta}^{1}$ and $\hat{\beta}^{2}$ plotted in orange (right) using a batch-size ~ 100 for each of 150 random gaussian queries. The order of the recovered vectors and the ground truth vectors is reversed.

Comparison of ground-truth vectors and recovered vectors

(c) The 100 -dimensional ground truth vectors β^{1} and β^{2} with sparsity $k=5$ plotted in green (left) and the recovered vectors (using Algorithm 8) $\hat{\beta}^{1}$ and $\hat{\beta}^{2}$ plotted in orange (right) using a batch-size ~ 600 for each of 150 random gaussian queries. The order of the recovered vectors and the ground truth vectors is reversed.

Conclusion and Future Work

- Our work removes any assumption for two unknown vectors that previous papers depended on.
- Our algorithm contains all main ingredients for extension to larger L. The main technical bottleneck is tight bounds in untangling Gaussian mixtures for more than two components.
- Can we handle other noise distributions?
- Lower bounds on query complexity?

