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Overview

Deep-learning-based inverse problem solvers recently proven to be sensitive to perturbations.

Instability stems from the combined system (deep network + underlying inverse problem).

Contributions:

Proposed a min-max formulation to build a robust model.

Introduced an auxiliary network to generate adversarial examples for which the image recon
network tries to minimize the recon loss.

Significant improvement of robustness using the proposed approach over other methods for
deep networks.

Theoretically analyzed a simple linear network - found that min-max formulation results in
singular-value filter regularized solution mitigating the effect of adversarial examples due to

ill-conditioning.



Attacks on DL-based Inverse problems solvers [

e Recent work shows deep learning typically yields unstable methods
for image reconstruction.

e FEvaluated 3 different types of instabilities:

o Tiny perturbation in the image domain results in severe

artifacts.
o Small structural change which is not recovered.

o Increasing number of samples does not improve recovery.

[1] Antun et al. On instabilities of deep learning in Image Recon and the potential costs of Al, PNAS 20



Instabilities to perturbation in /mage-Domain "
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Attack is obtained by solving: max || f(y + Ar) — z||* — %||r||2



Modeling perturbations in x or y-domain?

Our argument - study of perturbation in x-domain is sub-optimal
for inverse problems.

REASON -1

e Perturbation in x may not be able to model all possible perturbations in y.
e § -perturbation in x leads to A§ perturbation in y.
e mm) Constrains the perturbation to be in Range(A).

e mm) Not possible to model all possible perturbations when A does not
have full-row rank.



Reason-2: Effect of llI-Conditioning

oo Jourely ] wer ol

Perturbation in x: || f(A(x + 8)) — z||2 = ||d||2 = €

Perturbationiny: || f(Az +0) — z||2 = || fé|]2 = <

ms) For ill-conditioned measurement operator, an ideal inverse can be
highly vulnerable to even a small perturbation in the measurement-space,

which is totally missed in the x-space formulation.



Reason-3: Measurement Operator Perturbations

e Suppose there is mismatch between A used in training, and the A actually generating the
measurements.

o letactual A = A+ A mmm) perturbation Az in y-space.

o Typically Az ¢ Range(A), which the x-space formulation can't model.



Adversarial Training Framework for IR

minE, max ||f(Az;0) — z||* + \||f(Az + §;60) — z||?
0 &:(|6]|,<e
e Ideal framework for adversarial training.
e Very expensive during training.

e Finding perturbation specific to each training sample.
ﬁ A sub-optimal approximation

mein(sllrllgﬁmx E. || f(Az;0) — z||2 + M| f(Az + 6;6) — z||3
: 5 <€

e Tractable training.
e Finding perturbation common to many training samples.
e Not the ideal scheme. Why?



Desiderata for Adversarial Training

e Perturbation specific to the sample.
e Reasonably feasible to train in adversarial way.

d = arg max +6;0) — x||2
g5=H5H2S6Hf(y ) — zll3

Idea: model this perturbation using a deep network G’(y; gb)

Advantages:
e This approach eliminates the need to solve the inner-max using

hand-crafted method.

e Since G(.) is parameterized, and takes y as input, a well-trained G

results in optimal perturbation, given y.
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Modified Objective

max B, |f(Az;0) — z|* + N[ f(Az + G(Az; ¢);0) — z||*

(|G (,0) | <e ﬁ

minmax E, || f(A%; 6) — z|* + M| f(Az + G(Az; ¢);0) — z||* + Ao max{0, | G(Az; ¢)||; €2j}
N N J
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Training Schematic
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Robustness Metric

A (z0,€) = max ||f(Azo + 6) — zo]?

max(
H‘5“2<€

Determines the reconstruction error due to the worst-case

additive perturbation over the €--ball around the measurement.

Solved empirically using Projected Gradient Ascent.

ZA (i, €)

Smaller value implies more robust network
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Experiments - Comparison Benchmarks

End-to-end Training (No Regularization): mein E. | f(Az;0) — x|
L2-norm Regularization (“weight decay”): mein E, || f(Az;0) — z||* + p|/0|?

Parseval Networks: min B, || f(Aw; 0) — 2 |* +5 (3 IWWi ~ L3+ 3 [Wy"W; - 2
i€Ss. jes. J

2
2
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Qualitative Results: MNIST

Compressed Sensing (with Gaussian Measurement Matrix): Recon using deep CNN
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Qualitative Results: CelebA
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Quantitative Results
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Experiment on Real X-ray Images

e Implemented the proposed adversarial training algorithm on FBPConvNet [2] for

low-dose CT reconstruction.

e For fast computation of forward projection (Radon transform) and filtered
backprojection (FBP - numerical inverse Radon transform) on GPUs, we used the
Astra toolbox [3].

e Dataset: Anonymized clinical CT images [4]: 884 slices for training, and 221 slices

for evaluation.

e Measurements obtained by computing parallel-beam projections of the CT

images at 143 view angles uniformly spaced on [0, 180].

[2] Jin et al. Deep CNN for Inverse Problems in Imaging, IEEE Trans. On Image Proc., 2017
[3] Van Aarle, W., et al. "Fast and flexible X-ray tomography using the ASTRA toolbox." Optics Express 2016

[4] Prof. Michael Vannier, Dept. Radiology, Univ. of Chicago, personal communication. 17



ive Results for CT Recon
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AﬂBlYSIS Assumptions+Notation:

e fisa one-layer feed-forward network with no non-linearity i.e. f = B.

e Dataisnormalizedie. E(x)=0,COV(x)=1
Matrices A and B have SVDs: A = USVT B = MQPT

[ J
S is a diagonal matrix with singular values ordered by increasing magnitude

Theorem: If the above assumptions are satisfied, then the optimal B obtained
by solving (6) is a modified pseudo-inverse of A, with M =V, P=U andQa

filtered inverse of S:

2:7;1 S’l?

e
2 A2

n

with largest entry ¢,, of multiplicity m that depends on €, A and {S,-}l.zl
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Revisit: simple ill-conditioned case

oo oy

. 1 0
Modified pseudo-inverse after adv. training: f = [ ]

a
0 a?40.5¢2

§=[0,€e]T === ||f5| < |f6] fora — 0and e - 0

Important points:
e For unperturbed y, true inverse better than modified inverse.
e But for the true inverse, small perturbation results in severe degradation

e Trade-off behavior
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Results for relatively ill-conditioned DCT sub-matrix
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Take-home

Conventionally trained (and even regularized) deep-learning-based image reconstruction

networks are vulnerable to adversarial perturbations in the measurement.
Proposed a min-max formulation to build robust DL-based image reconstruction.

To make this tractable, we introduced an auxiliary network to generate adversarial

examples for which the image recon network tries to minimize the recon loss.

Analyzed a simple linear network - found that min-max formulation results in singular-
value filter regularized solution mitigating the effect of adversarial examples due to ill-

conditioning of the measurement operator.

Empirical results show that behavior depends on the conditioning of the measurement

operator.
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