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Overview
● Deep-learning-based inverse problem solvers recently proven to be sensitive to perturbations.

● Instability stems from the combined system (deep network + underlying inverse problem).

Contributions:

● Proposed a min-max formulation to build a robust model.

● Introduced an auxiliary network to generate adversarial examples for which the image recon 

network tries to minimize the recon loss.

● Significant improvement of robustness using the proposed approach over other methods for 

deep networks.

● Theoretically analyzed a simple linear network - found that min-max formulation results in 

singular-value filter regularized solution mitigating the effect of adversarial examples due to 

ill-conditioning.
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Attacks on DL-based Inverse problems solvers [1]

● Recent work shows deep learning typically yields unstable methods 
for image reconstruction.

● Evaluated 3 different types of instabilities:

○ Tiny perturbation in the image domain results in severe 

artifacts.

○ Small structural change which is not recovered.

○ Increasing number of samples does not improve recovery.

[1] Antun et al. On instabilities of deep learning in Image Recon and the potential costs of AI, PNAS ‘20
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Instabilities to perturbation in Image-Domain [1]

Attack is obtained by solving:
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Modeling perturbations in x or y-domain?

● Perturbation in x may not be able to model all possible perturbations in y.

● - perturbation in x leads to         perturbation in y.

● Constrains the perturbation to be in Range(A).

● Not possible to model all possible perturbations when A does not  
have full-row rank.

REASON - 1

Our argument - study of perturbation in x-domain is sub-optimal
for inverse problems.
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Reason-2: Effect of Ill-Conditioning

Perturbation in x:

Perturbation in y:

For ill-conditioned measurement operator, an ideal inverse can be 

highly vulnerable to even a small perturbation in the measurement-space,

which is totally missed in the x-space formulation.
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Reason-3: Measurement Operator Perturbations

● Suppose there is mismatch between A used in training, and the A actually generating the 
measurements.

● Let actual                                          perturbation          in y-space.

● Typically                                   , which the x-space formulation can’t model.
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Adversarial Training Framework for IR

● Ideal framework for adversarial training.
● Very expensive during training.
● Finding perturbation specific to each training sample.

A sub-optimal approximation

● Tractable training.
● Finding perturbation common to many training samples.
● Not the ideal scheme. Why? 
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Desiderata for Adversarial Training
● Perturbation specific to the sample.

● Reasonably feasible to train in adversarial way.

Idea: model this perturbation using a deep network 

Advantages:
● This approach eliminates the need to solve the inner-max using 

hand-crafted method.

● Since G(.) is parameterized, and takes y as input, a well-trained G 

results in optimal perturbation, given y.
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Modified Objective

True Recon. term Adversarial term Bounded perturbation term
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Training Schematic
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Robustness Metric

● Determines the reconstruction error due to the worst-case 

additive perturbation over the    --ball around the measurement. 

● Solved empirically using Projected Gradient Ascent.

Smaller value implies more robust network
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Experiments - Comparison Benchmarks

End-to-end Training (No Regularization):

L2-norm Regularization (“weight decay”):

Parseval Networks:
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Qualitative Results: MNIST

Compressed Sensing (with Gaussian Measurement Matrix): Recon using deep CNN
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Qualitative Results: CelebA
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Quantitative Results

MNIST
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Experiment on Real X-ray Images

[2] Jin et al. Deep CNN for Inverse Problems in Imaging, IEEE Trans. On Image Proc., 2017
[3] Van Aarle, W., et al. "Fast and flexible X-ray tomography using the ASTRA toolbox." Optics Express 2016
[4]  Prof. Michael Vannier, Dept. Radiology, Univ. of Chicago, personal communication.

● Implemented the proposed adversarial training algorithm on FBPConvNet [2] for 

low-dose CT reconstruction.

● For fast computation of forward projection (Radon transform) and filtered 

backprojection (FBP - numerical inverse Radon transform) on GPUs, we used the 

Astra toolbox [3].

● Dataset: Anonymized clinical CT images [4]: 884 slices for training, and 221 slices  

for evaluation.

● Measurements obtained by computing parallel-beam projections of the CT 

images at 143 view angles uniformly spaced on [0, 180].
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Qualitative Results for CT Recon
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Theoretical 
Analysis

(6)

Assumptions+Notation:
● is a one-layer feed-forward network with no non-linearity i.e.           
● Data is normalized i.e.                   ,                      

● Matrices A  and B have SVDs:                        
● S is a diagonal matrix with singular values ordered by increasing magnitude

Theorem: If the above assumptions are satisfied, then the optimal B obtained 

by solving (6) is a modified pseudo-inverse of A, with                               and Q a 

filtered inverse of S:
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Revisit: simple ill-conditioned case

Modified pseudo-inverse after adv. training:

Important points: 
● For unperturbed y, true inverse better than modified inverse. 
● But for the true inverse, small perturbation results in severe degradation
● Trade-off behavior
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Results for relatively ill-conditioned DCT sub-matrix
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Take-home 

● Conventionally trained (and even regularized) deep-learning-based image reconstruction 

networks are vulnerable to adversarial perturbations in the measurement.

● Proposed a min-max formulation to build robust DL-based image reconstruction.

● To make this tractable, we introduced an auxiliary network to generate adversarial 

examples for which the image recon network tries to minimize the recon loss.

● Analyzed a simple linear network - found that min-max formulation results in singular-

value filter regularized solution mitigating the effect of adversarial examples due to ill-

conditioning of the measurement operator.

● Empirical results show that behavior depends on the conditioning of the measurement 

operator. 
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