

Microsoft[®] **Research**

NEURO-SYMBOLIC VISUAL REASONING: DISENTANGLING "VISUAL" FROM "REASONING"

SAEED AMIZADEH SAAMIZAD@MICROSOFT.COM

ALEX POLOZOV POLOZOV@MICROSOFT.COM

HAMID PALANGI HPALANGI@MICROSOFT.COM

YICHEN HUANG <u>YICHUANG@MIT.EDU</u>

KAZUHITO KOISHIDA

NEURO-SYMBOLIC VISUAL REASONING 1

VISUAL QUESTION ANSWERING

[GQA: Hudson & Manning, 2019]

NEURO-SYMBOLIC VISUAL REASONING 2

$REASONING \triangleq LOGICAL REASONING + EXTRA CAPABILITIES$

Pure logical reasoning does not often suffice for visual reasoning because visual perception is noisy and uncertain.

Example: imperfect visual perception classifies $Pr(Husky | x) \approx Pr(Wolf | x)$.

Then,

Pr("Is there a husky in the living room?") ≈
Pr("Is there a wolf in the living room?")

Yet "*in the living room*" or the visual context should resolve the ambiguity.

NEURO-SYMBOLIC VISUAL REASONING 3

RESEARCH QUESTIONS

- 1. Given a visual featurization \mathcal{V} of a visual scene, how informative \mathcal{V} is on its own to answer a question about the scene without learned reasoning?
- 2. How solvable is VQA/GQA given perfect vision?
- 3. For an arbitrary VQA model \mathcal{M} , how much its reasoning abilities can compensate for the imperfections in perception to solve the task?

 (I) Differentiable First-Order Logic (∇-FOL) for Visual Description & Reasoning

(II) Evaluation of Reasoning vs. Perception for VQA models using ∇-FOL

NEURO-SYMBOLIC VISUAL REASONING 5

FIRST ORDER LOGIC FOR SCENE DESCRIPTION

Scene Graph Representation

FOL Representation

- Variables enumerates over detected objects.
- Atomic Predicates represent object names, attributes and binary relations.
- Formulas represent a statement or a question about the scene.

FOL FOR POSING A HYPOTHETICAL QUESTION

Scene Graph Representation

FOL Representation

by evaluating the likelihood:

$$\alpha(F_Q) \triangleq \Pr(Answer = "Yes"|I) = \Pr(F_Q \Leftrightarrow True|I)$$

exponentially hard to calculate directly 😕

NEURO-SYMBOLIC VISUAL REASONING 7

∇ -FOL: INFERENCE IN POLYNOMIAL TIME

In order to do inference in polynomial time, we introduce the intermediate notion of attention on the object x_i w.r.t. formula F:

 $\alpha(F|x_i) \triangleq \Pr(F_{X=x_i} \Leftrightarrow True), \quad \text{Where} \quad F_{X=x_i} \triangleq F(x_i, Y, \dots, Z)$

Then the answer likelihood can be reduced to computing attention via aggregation operators A_{\forall} and A_{\exists} :

If X is universally quantified
$$(\forall)$$
:

$$\alpha(F) = \prod_{i=1}^{N} \alpha(F|x_i) \triangleq A_{\forall}(\alpha(F|X))$$
If X is existentially quantified (\exists) :

$$\alpha(F) = \mathbf{1} - \prod_{i=1}^{N} (\mathbf{1} - \alpha(F|x_i)) \triangleq A_{\exists}(\alpha(F|X))$$

NEURO-SYMBOLIC VISUAL REASONING 8

∇ -FOL: RECURSIVE CALCULATION OF ATTENTION

THE LANGUAGE SYSTEM: FROM NATURAL LANGUAGE TO FOL FORMULA

GQA DOMAIN SPECIFIC LANGUAGE

GQA OP	Т	Equivalent FOL Description	Equivalent DFOL Program		
GSelect(name)[]	N	name(X)	$\operatorname{Filter}_{name}[1]$		
GFilter $(attr)[\alpha_X]$	N	attr(X)	$\operatorname{Filter}_{\operatorname{attr}}[lpha_X]$		
$GRelate(name, rel)[\alpha_X]$	N	$name(Y) \wedge rel(X,Y)$	$ ext{Relate}_{rel,\exists} \begin{bmatrix} ext{Filter}_{name}[lpha_X] \end{bmatrix}$		
$\mathbf{GVerifyAttr}(attr)[\boldsymbol{\alpha}_X]$	Y	$\exists X: attr(X)$	$\mathcal{A}_{\exists} ig(\operatorname{Filter}_{\operatorname{attr}} [lpha_X] ig)$		
$\mathbf{GVerifyRel}(name, rel)[\alpha_X]$	Y	$\exists Y \exists X: name(Y) \wedge rel(X,Y)$	$\mathcal{A}_{\exists} ig(\operatorname{Relate}_{rel, \exists} ig[\operatorname{Filter}_{name} [\alpha_X] ig] ig)$		
$GQuery(category)[\alpha_X]$	Y	$[\exists X : c(X) \text{ for } c \text{ in } category]$	$\left[\mathcal{A}_{\exists}\left(\mathbf{Filter}_{c}\left[\alpha_{X}\right]\right) \text{ for } c \text{ in } category ight]$		
$\textbf{GChooseAttr}(a_1,a_2)[\alpha_X]$	Y	$\left[\exists X: a(X) \text{ for } a \text{ in } [a_1, a_2]\right]$	$\left[\mathcal{A}_{\exists}\left(\mathbf{Filter}_{a}[\alpha_{X}]\right) \text{ for } a \text{ in } [a_{1}, a_{2}]\right]$		
GChooseRel $(n, r_1, r_2)[\alpha_X]$	Y	$\left[\exists Y \exists X: n(Y) \wedge r(X, Y) \text{ for } r \text{ in } [r_1, r_2]\right]$	$\left[\mathcal{A}_{\exists}\left(\mathbf{Relate}_{r,\exists}\left[\mathbf{Filter}_{n}[\boldsymbol{\alpha}_{X}]\right]\right) \text{ for } r \text{ in } [r_{1}, r_{2}]\right]$		
$\operatorname{\mathbf{GExists}}()[\alpha_X]$	Y	∃X	$\mathcal{A}_{\exists}(lpha_X)$		
$\mathbf{GAnd}()[\alpha_X,\alpha_Y]$	Y	$\exists X \land \exists Y$	$\mathcal{A}_{\exists}(lpha_X)\cdot\mathcal{A}_{\exists}(lpha_Y)$		
$\operatorname{GOr}()[\alpha_X, \alpha_Y]$	Y	$\exists X \lor \exists Y$	$1 - (1 - \mathcal{A}_{\exists}(\alpha_X)) \cdot (1 - \mathcal{A}_{\exists}(\alpha_Y))$		
$\mathbf{GTwoSame}(category)[\alpha_X,\alpha_Y]$	Y	$\exists X \exists Y \bigvee_{c \in category} \left(c(X) \land c(Y) \right)$	$ \mathcal{A}_{\exists} \left(\left[\mathcal{A}_{\exists} \left(\mathrm{Filter}_{c}[\alpha_X] \right) \cdot \mathcal{A}_{\exists} \left(\mathrm{Filter}_{c}[\alpha_Y] \right) \right. \\ \left. \mathrm{for} \ c \ \mathrm{in} \ category \right] \right) $		
$\textbf{GTwoDifferent}(category)[\alpha_X,\alpha_Y]$	Y	$\exists X \exists Y \bigwedge_{c \in category} \left(\neg c(X) \lor \neg c(Y) \right)$	$1 - \mathbf{GTwoSame}(category)[\alpha_X, \alpha_Y]$		
$\textbf{GAllSame}(category)[\alpha_X]$	Y	$\bigvee_{c \in category} \forall X : c(X)$	$1 - \prod_{c \in category} \left(1 - \mathcal{A}_{\forall} \left(\operatorname{Filter}_{c}[\alpha_X] \right) \right)$		

THE WHOLE SYSTEM

NEURO-SYMBOLIC VISUAL REASONING 13

USING ∇ -FOL TO EVALUATE PERCEPTION

Q1: Given a visual featurization \mathcal{V} for a certain VR task, how informative \mathcal{V} is on its own to solve the task using mere FOL for reasoning?

For GQA: The visual featurization \mathcal{V} is the Faster-RCNN featurization [Ren et. al, 2015].

BUILDING THE BASE MODEL

The Base Model

- 1) Put ∇ -FOL on the top of a neural Visual Oracle \mathcal{O} .
- 2) Train the resulted architecture using the Faster-RCNN featurization, the golden programs and golden answers in GQA via indirect supervision from the answer.
- 3) Denote the result as the Base Model \mathcal{M}_{ϕ} .

USING ∇ -FOL TO EVALUATE PERCEPTION

Q1: Given a visual featurization \mathcal{V} for a certain VR task, how informative \mathcal{V} is on its own to solve the task using mere FOL for reasoning?

Split	Accuracy	Consistency
Open	42.73 %	88.74 %
Binary	65.08 %	86.65 %
All	51.86 %	88.35 %

Table 1: The accuracy and consistency on Test-Dev for the Base model using the Faster-RCNN features.

 ∇ -FOL has no trainable parameters, so the **accuracy** of \mathcal{M}_{ϕ} on test data indirectly captures the amount of information in \mathcal{V} .

USING $\nabla\textsc{-}\text{Fol}$ to measure the importance of perception

Q2: how well a VR task can be achieved given perfect vision?

For GQA: What happens if we replace the visual system by the Golden Scene Graphs?

NEURO-SYMBOLIC VISUAL REASONING 17

BUILDING THE PERFECT MODEL

The Perfect Model

- 1) Replace the trained \mathcal{O} in \mathcal{M}_{ϕ} with the golden GQA scene graphs, denoted as \mathcal{O}^* .
- 2) Denote the result as the Perfect Model \mathcal{M}^* .

USING $\nabla\textsc{-}\text{FOL}$ to measure the importance of perception

Q2: how well a VR task can be achieved given perfect vision?

The **accuracy** of \mathcal{M}^* on the GQA validation set is \approx **96%**.

Achieving such high upper-bound shows that:

The ∇ -FOL is sound.

> The GQA task is heavily vision-dependent.

USING abla-Fol to evaluate reasoning

Q3: How much the reasoning abilities of a candidate model \mathcal{M} can compensate for the imperfections in perception to solve the task?

Important: \mathcal{M} is arbitrary! Need not be DFOL-based.

For GQA: we compare MAC Network [Hudson & Manning, 2018] vs LXMERT [Tan & Bansal, 2019].

NEURO-SYMBOLIC VISUAL REASONING 20

HARD SET VS EASY SET

The accuracy of \mathcal{M} on the hard set (Acc_h) captures the amount the reasoning process of \mathcal{M} compensates for its imperfect perception.

The error of \mathcal{M} on the easy set (Err_e) captures the degree to which the reasoning process of \mathcal{M} distorts the informative visual signals.

USING ∇ -FOL TO EVALUATE REASONING

Q3: How much the reasoning abilities of a candidate model \mathcal{M} can compensate for the imperfections in perception to solve the task?

		Tes	st-Dev	Hard	Test-Dev	Easy 7	Easy Test-Dev	
	Split	Accuracy	Consistency	Acc_h	Consistency	Err_{e}	Consistency	
MAC	Open	41.66 %	82.28 %	18.12 %	74.87 %	26.70 %	84.54 %	
	Binary	71.70 %	70.69 %	58.77 %	66.51 %	21.36 %	75.37 %	
	All	55.37 %	79.13 %	(30.54 %)	71.04 %	23.70 %	82.83 %	
	Open	47.02 %	86.93 %	25.27 %	85.21 %	22.92 %	87.75 %	
LXMERT	Binary	77.63 %	77.48 %	63.02 %	73.58 %	13.93 %	81.63 %	
	All	61.07 %	84.48 %	38.43 %	81.05 %	17.87 %	86.52 %	

Table 2: The Acc_h , Err_e and consistency for MAC and LXMERT over Test-Dev and its hard and easy subsets according to the Base model.

NEURO-SYMBOLIC VISUAL REASONING 22

CONCLUSION REMARKS

In this work, we

- 1. Proposed a differentiable visual description and reasoning formalism directly derived from first order logic.
- 2. Proposed coherent methodology for separately evaluating perception and reasoning using our differentiable first order logic formalism.
- 3. Incorporated our framework for the **GQA** task and two of its famous models and arrived at insightful observations.

SUPPLEMENTAL MATERIALS

MODELING OPEN QUESTIONS USING FOL

For open questions, we generate all potential options for the answer, treat each option as a binary question and choose the one with highest likelihood.

For example: "What is the color of the ball on the left of all objects?" can be answered by answering a set of binary questions:

"Is the ball on the left of all objects blue?" $\rightarrow \Pr(F_{0_1} \Leftrightarrow True|I)$ "Is the ball on the left of all objects red?" $\rightarrow \Pr(F_{0_2} \Leftrightarrow True|I)$ "Is the ball on the left of all objects green?" $\rightarrow \Pr(F_{Q_3} \Leftrightarrow True|I)$

BEYOND PURE LOGICAL REASONING: TOP-DOWN CONTEXTUAL CALIBRATION

Example of a reasoning technique beyond pure DFOL:

Reminder: suppose $\alpha("Husky"|x) \approx \alpha("Wolf"|x)$.

Then, **Pr**("*Is there a husky in the living room*? ") ≈ **Pr**("*Is there a wolf in the living room*? ")

However, the context "*in the living room*" should help resolve the ambiguity.

In other words, the context can be used to **calibrate** the attentions values in the top-down manner.

BEYOND PURE LOGICAL REASONING: TOP-DOWN CONTEXTUAL CALIBRATION

Instead of uniform, assume the attention values $\alpha(F|x)$ are Beta distributed, then the posterior is:

$$\Pr(F \Leftrightarrow I | \alpha) = \frac{c \alpha^w}{c \alpha^w + d(1-c)(1-\alpha)^v}$$

Where c, d, w, v are derived from the beta distribution likelihood + the prior and are estimated from the question context using a bi-LSTM.

EFFECT OF TOP-DOWN CONTEXTUAL CALIBRATION

		Test-Dev		Hard	Hard Test-Dev		Easy Test-Dev	
	Split	Accuracy	Consistency	Acc_h	Consistency	Err_{e}	Consistency	
abla-FOL	Open	41.22 %	87.63 %	0.53 %	11.46 %	2.53 %	90.70 %	
	Binary	64.65 %	85.54 %	4.42 %	61.11 %	2.21 %	86.33 %	
	All	51.45 %	87.22 %	1.81 %	19.44 %	2.39 %	89.90 %	
Calibrated ∇-FOL	Open	41.22 %	86.37 %	0.53 %	11.46 %	2.53 %	89.45 %	
	Binary	71.99 %	79.28 %	37.82 %	70.90 %	9.20 %	84.45 %	
	All	54.76 %	84.48 %	12.91 %	57.72 %	6.32 %	88.51 %	

Table 3: The Acc_h, Err_e and consistency for ∇ -FOL and Calibrated ∇ -FOL over Test-Dev and its hard and easy subsets.