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Contributions

We developed metrics inspired by neuroscience that are
predictive of generalization and training dynamics.
Key to our metrics is relating input complexity to deep
representations.
This provides a new direction to approaching generalization
with potential tertiary applications.
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Motivation

DNNs require deeper representations in order to classify
harder examples. [1]
We formalize this as, for input x and network net:
I α(x) , di�culty of input ∈ R
I β(x,net) , use of deep representations ∈ R

I.e. in DNNs, for the distribution trained on:
=⇒ α ∝ β
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Motivation

To what extent is α ∝ β?
=⇒ Let ρα,β be a measure of α ∝ β.
Hypothesis: Higher ρα,β ’s correspond to “better” networks.
Question: Can ρα,β predict generalization? (Assuming good
de�nitions of α and β)
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Neuroscience Inspiration

Are there good de�nitions of α, β for the brain?
In [5], neuroscience work shows that, for the brain, ρα,β is
large:
I α(T) = abstractness of task T, as measured by mechanical
turk surveys.

I β(T) = use of “deeper” neurons, where “deeper” corresponds
to distance from sensory cortices.
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Defining α

Back to our formalization of the result from [1]:
I α(x) , di�culty of input
I β(x,net) , use of deep representations

Empirically, we show α(x) ∝ input complexity, as measured
by:
1. Compression ratio of x calculated via compression algorithms
(as done in [4]).

2. Shannon entropy estimation via histogram binning of feature
values of x:

−
N∑
i=1

pbini log pbini

for N bins where pbini is proportional to the frequency of
features in the range de�ned by bin i.

Both give qualitatively similar results. We use method 2 for
its ease of implementation.
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Defining α

Q: Does input complexity correspond to classi�cation di�culty?

Figure: Mean test error versus training time for varying percentiles of
input complexity. The model is an MLP trained on MNIST.
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Defining β

Next, we de�ne β(x) as:
I The linear regressed slope on points (d, zd(x)) where

d = 1, . . . , L for an L layer network, where zd(x) is the sum of
activation values for layer d of the network.

β as de�ned will be proportional to the use of deeper
neurons – it is a coarse measure of use of depth.
Note that β does not model the distribution of activation
values versus depth (which is highly non-linear!). It is just a
coarse measure that is practical for our purposes.
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Cognitive Neural Activation metric (CNA)

The CNA (our metric for test performance) is de�ned for
batch X and network net:

corr(α(x), β(x,net) | x ∈ X)

where corr is Pearson correlation (though other correlations
can be used).
Intuitively, well-performing networks should show higher
CNA values.
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CNA Results

Figure: A simple MLP trained on MNIST with the training loss values
(Left) and CNA values (Right) shown over training time. It is clear that
the CNA shows a high correlation with training loss, with in�ection
points of both curves occuring at roughly the same timestep.
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CNA Results

Figure: Network optimization trajectory (red curve) over training time
visualized in 2D via PCA. The CNA gradient (contour background) is
approximated via sampling from the principle component space and
using the inverse PCA transformation.
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CNA Results

Figure: CNA vs Test Accuracy (moving average) for close to 200 network
instances. Datasets: MNIST, FashionMNIST, CIFAR-10, CIFAR-100,
ImageNet-32. Architectures: MLP, VGG-18, ResNet-18, ResNet-101.
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CNA-Margin: Predicting the Generalization Gap

We develop another formulation focused on measuring the
generalization gap.
I Generalization gap: di�erence in performance between

training and test set for a given network and data
distribution.
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CNA-Margin: Predicting the Generalization Gap

Figure: (α, β)-curves for an MLP trained on SVHN, with the train set in
blue and the test set in orange. The gap between the two curves
corresponds to the gap between the train and test set performance for
the network.
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CNA-Margin: Predicting the Generalization Gap

We de�ne the CNA-Area (CNA-A) as the “area” betwen the
two curves shown:

CNAA(Xtrain, Xtest) , max
P∈S

A(P)

where A(P) denotes the area of a polygon P, and S denotes
the set of polygons that can be inscribed between the
curves.
The CNA-Margin (CNA-M) is simply CNA-A multiplied by the
training margin γmargin (see [3] for de�nition):

CNAM(Xtrain, Xtest) , γmargin · CNAA(Xtrain, Xtest)
This takes a similar form to sharpness-based generalization
metrics, which are SOTA for generalization gap prediction [2],
e.g. the L2 norm metric is proportional to:

1
γ2margin

∑
k
||Wk||2
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CNA-M Results

Figure: Generalization gap correlation for CNA-M and comparison
generalization metrics. Left �gure is w.r.t. standard datasets and a
Gaussian noise dataset, right �gure is w.r.t. standard datasets for
varying degrees of shu�ed labels (ranging from 10% to 50%).
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CNA-M Results

Figure: Generalization gap correlation for CNA-M and comparison
generalization metrics for standard datasets and training only (i.e. no
Gaussian noise dataset included). Legend in previous slide.
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Summary and Conclusions

CNA shows interesting properties w.r.t. training.
=⇒ Potentially useful as an unsupervised loss term and for
understanding training dynamics.
CNA-M shows excellent prediction of the generalization gap.
=⇒ Potentially can lead to insights into generalization not
attainable by current directions.
Tertiary contributions:
I These nice results suggest studying DNNs under the α− β
framing in general can lead to more insights or applications.

I We have formalized and provided direct empirical measures
of “deeper representations are needed in order to classify
harder examples.”
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