Learning Selection Strategies in Buchberger's Algorithm

Dylan Peifer, Michael Stillman, Daniel Halpern-Leistner

Cornell University

Buchberger's algorithm is

- a central tool for analyzing systems of polynomial equations
- the computational bottleneck in a wide variety of algorithms used in computer algebra software
- dependent for performance on human-designed decision heuristics at several key points in the algorithm

Buchberger's algorithm is

- a central tool for analyzing systems of polynomial equations
- the computational bottleneck in a wide variety of algorithms used in computer algebra software
- dependent for performance on human-designed decision heuristics at several key points in the algorithm

Idea: use reinforcement learning methods to train agents to make these decisions.

Main Contributions

1. Initiating the empirical study of Buchberger's algorithm from the perspective of machine learning.
2. Identifying a precise sub-domain of the problem that can serve as a useful benchmark for this and future research.
3. Training a simple model for pair selection which outperforms state-of-the art strategies by 20% to 40% in this domain.

Gröbner bases are special sets of polynomials that are useful in many applications, including

- computer vision
- cryptography
- biological networks and chemical reaction networks
- robotics
- statistics
- string theory
- signal and image processing
- integer programming
- coding theory
- splines

Question
Does the system of equations

$$
\left\{\begin{array}{l}
0=f_{1}(x, y)=x^{3}+y^{2} \tag{1}\\
0=f_{2}(x, y)=x^{2} y-1
\end{array}\right.
$$

have an exact solution?

Question

Does the system of equations

$$
\left\{\begin{array}{l}
0=f_{1}(x, y)=x^{3}+y^{2} \tag{1}\\
0=f_{2}(x, y)=x^{2} y-1
\end{array}\right.
$$

have an exact solution?
If there are polynomials a_{1} and a_{2} such that

$$
\begin{equation*}
h(x, y)=a_{1}(x, y)\left(x^{3}+y^{2}\right)+a_{2}(x, y)\left(x^{2} y-1\right) \tag{2}
\end{equation*}
$$

is the constant polynomial $h(x, y)=1$, then there are no solutions.

Question

Does the system of equations

$$
\left\{\begin{array}{l}
0=f_{1}(x, y)=x^{3}+y^{2} \tag{1}\\
0=f_{2}(x, y)=x^{2} y-1
\end{array}\right.
$$

have an exact solution?
If there are polynomials a_{1} and a_{2} such that

$$
\begin{equation*}
h(x, y)=a_{1}(x, y)\left(x^{3}+y^{2}\right)+a_{2}(x, y)\left(x^{2} y-1\right) \tag{2}
\end{equation*}
$$

is the constant polynomial $h(x, y)=1$, then there are no solutions.
If there are no solutions, then you can write 1 as a combination of $x^{3}+y^{2}$ and $x^{2} y-1$ by the weak Nullstellensatz (Hilbert, 1893).

Definition

The ideal generated by f_{1}, \ldots, f_{s} is the set of all polynomials of the form

$$
h=a_{1} f_{1}+\cdots+a_{s} f_{s}
$$

where a_{1}, \ldots, a_{s} are arbitrary polynomials.

Definition

Given a set of polynomials $F=\left\{f_{1}, \ldots, f_{s}\right\}$, the multivariate division algorithm takes any polynomial h and produces a remainder polynomial r, written $r=$ reduce (h, F), such that

$$
h=q_{1} f_{1}+\cdots+q_{s} f_{s}+r
$$

where the lead term of r is smaller than any lead term of the f_{i}.

Definition

A Gröbner basis G of a nonzero ideal I is a set of generators $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ of I such that the remainder reduce (h, G) is guaranteed to be 0 if h is in 1 .

Theorem (Buchberger's Criterion, 1965)

Suppose the set of polynomials $G=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ generates the ideal I. If reduce $\left(S\left(g_{i}, g_{j}\right), G\right)=0$ for all pairs g_{i}, g_{j}, where $S\left(g_{i}, g_{j}\right)$ is the S-polynomial of g_{i} and g_{j}, then G is a Gröbner basis of I.

Example
In our previous example $F=\left\{x^{3}+y^{2}, x^{2} y-1\right\}$

$$
\begin{aligned}
r & =\operatorname{reduce}\left(S\left(x^{3}+y^{2}, x^{2} y-1\right), F\right) \\
& =\operatorname{reduce}\left(y\left(x^{3}+y^{2}\right)-x\left(x^{2} y-1\right), F\right) \\
& =y^{3}+x
\end{aligned}
$$

so Buchberger's criterion is not satisfied.

$$
\begin{aligned}
& G \leftarrow\left\{f_{1}, \ldots, f_{s}\right\} \\
& P \leftarrow\left\{\left(f_{i}, f_{j}\right): 1 \leq i<j \leq s\right\}
\end{aligned}
$$

Environment

$P \leftarrow P \backslash\left\{\left(f_{i}, f_{j}\right)\right\}$
Agent
$\left(f_{i}, f_{j}\right) \leftarrow \operatorname{select}(P)$
$r \leftarrow \operatorname{reduce}\left(S\left(f_{i}, f_{j}\right), G\right)$
if $r \neq 0$ then
$P \leftarrow \operatorname{update}(P, G, r)$
$G \leftarrow G \cup\{r\}$
end if
$k=\begin{gathered}\text { count of polynomial } \\ \text { additions } \\ \text { performed in reduce }\end{gathered}$

Starting generators are binomials with no constant terms in 3 variables and a fixed maximum degree.

Example
$\left\{x^{3} z+y^{2}, \quad x^{2} z^{2}-x y z, \quad 5 x^{2} y-3 z\right\}$

Starting generators are binomials with no constant terms in 3 variables and a fixed maximum degree.

Example
$\left\{x^{3} z+y^{2}, \quad x^{2} z^{2}-x y z, \quad 5 x^{2} y-3 z\right\}$

- All new generators are also binomial.
- Some of the hardest known examples are binomial ideals.
- By adjusting the degree and number of initial generators, we can adjust the difficulty of the problem.

The state (G, P) is mapped to a $|P| \times 12$ matrix with each row given by the
$(2$ binomials $)(2$ terms $)(3$ variables $)=12$ exponents involved in each pair.

The state (G, P) is mapped to a $|P| \times 12$ matrix with each row given by the

$$
(2 \text { binomials })(2 \text { terms })(3 \text { variables })=12 \text { exponents }
$$ involved in each pair.

This matrix is passed into a policy network

and a value model which computes the future return from following Degree selection.

Summary

- Buchberger's algorithm is a central tool for analyzing systems of polynomial equations.
- Pair selection, a key choice in the algorithm, can be expressed as a reinforcement learning problem.
- In several distributions of random binomial ideals, our trained model outperformed state-of-the-art human-designed selection strategies by 20% to 40%.

Dylan Peifer
 Michael Stillman
 Daniel Halpern-Leistner

https://github.com/dylanpeifer/deepgroebner

