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Buchberger's algorithm is

» a central tool for analyzing systems of polynomial equations

» the computational bottleneck in a wide variety of algorithms
used in computer algebra software

» dependent for performance on human-designed decision
heuristics at several key points in the algorithm
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Idea: use reinforcement learning methods to train agents to make
these decisions.



Main Contributions

1. Initiating the empirical study of Buchberger's algorithm from
the perspective of machine learning.

2. ldentifying a precise sub-domain of the problem that can serve
as a useful benchmark for this and future research.

3. Training a simple model for pair selection which outperforms
state-of-the art strategies by 20% to 40% in this domain.



Grobner bases are special sets of polynomials that are useful in
many applications, including
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computer vision

cryptography

biological networks and chemical reaction networks
robotics

statistics

string theory

signal and image processing

integer programming

coding theory

splines
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Does the system of equations

0=f(x,y)=x"+y
0=fh(xy)=xy—1

have an exact solution?
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Question
Does the system of equations

{ 0=fi(x,y) = (1)

0=f(xy)=xy—1
have an exact solution?

If there are polynomials a; and a» such that

h(x,y) = ai1(x, y)( ) + a2(x,y)(°y — 1), (2)

is the constant polynomial h(x,y) = 1, then there are no solutions.
If there are no solutions, then you can write 1 as a combination of
and x?y — 1 by the weak Nullstellensatz (Hilbert, 1893).



Definition
The ideal generated by fi,. .., fs is the set of all polynomials of the
form

h=aifi+ -+ asfs

where a1, ..., as are arbitrary polynomials.
Definition
Given a set of polynomials F = {fi,...,fs}, the multivariate

division algorithm takes any polynomial h and produces a
remainder polynomial r, written r = reduce(h, F), such that

h=qufi+ -+ qefe+ 1
where the lead term of r is smaller than any lead term of the f;.
Definition
A Grobner basis G of a nonzero ideal | is a set of generators

{g1,82,-..,8«} of | such that the remainder reduce(h, G) is
guaranteed to be 0 if h is in I.



Theorem (Buchberger's Criterion, 1965)

Suppose the set of polynomials G = {gi1, g, ...,8k} generates the
ideal . If reduce(S(gi, gj), G) = 0 for all pairs gj, gj, where
S(gi, gj) is the S-polynomial of g; and gj, then G is a Grébner
basis of |.

Example

In our previous example F = {x° + y?, x?y — 1}

r= reduce(S(x3 + v, X%y — 1), F)
= reduce(y(x* + y%) — x(x*y — 1), F)

so Buchberger’s criterion is not satisfied.



G {f,....fs} ]
P« {(fi,f):1<i<j<s} %\,/Enwronment\

P« P\{(fif)}

(" Agent =D | e reduce(S(f,£). 6)

- B if r # 0 then
< R——k—1 P + update(P, G, r)

(fi,£;) < select(P) G« GU{r)
A= (i 1) . end if
\ j count of polynomial
k= additions
performed in reduce
if |P|=0

return G }.//\ )




Starting generators are binomials with no constant terms in 3
variables and a fixed maximum degree.

Example

{3z +y? x%2z22 —xyz, 5x%y —3z}



Starting generators are binomials with no constant terms in 3
variables and a fixed maximum degree.

Example

{3z +y? x%2z22 —xyz, 5x%y —3z}

> All new generators are also binomial.
» Some of the hardest known examples are binomial ideals.

» By adjusting the degree and number of initial generators, we
can adjust the difficulty of the problem.



The state (G, P) is mapped to a |P| x 12 matrix with each row
given by the

(2 binomials)(2 terms)(3 variables) = 12 exponents

involved in each pair.



The state (G, P) is mapped to a |P| x 12 matrix with each row
given by the

(2 binomials)(2 terms)(3 variables) = 12 exponents

involved in each pair.

This matrix is passed into a policy network

1D conv 1D conv
relu linear softmax

(1P| x 12}—{|P| x 128}—{(|P| x 1}—{|P| x 1]

and a value model which computes the future return from
following Degree selection.
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Summary

» Buchberger's algorithm is a central tool for analyzing systems
of polynomial equations.

P Pair selection, a key choice in the algorithm, can be expressed
as a reinforcement learning problem.

» In several distributions of random binomial ideals, our trained
model outperformed state-of-the-art human-designed selection
strategies by 20% to 40%.
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