Spectral Frank-Wolfe Algorithm: Strict Complementarity and Linear Convergence

Lijun Ding

Joint work with Yingjie Fei, Qiantong Xu, and Chengrun Yang

June 15, 2020

Overview

(1) Introduction

- Problem setup
- Past algorithms
(2) SpecFW and strict complementarity
- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity
(3) Numerics
- Experimental setup
- Numerical results

Convex smooth minimization over a spectrahedron

Main optimization problem:

Convex smooth minimization over a spectrahedron

Main optimization problem:

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- function g strongly convex and smooth

Convex smooth minimization over a spectrahedron

Main optimization problem:

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \tag{M}\\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n},
\end{array}
$$

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^{n}$

Convex smooth minimization over a spectrahedron

Main optimization problem:

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \tag{M}\\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n},
\end{array}
$$

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^{n}$
- trace $\operatorname{tr}(\cdot)$, sum of diagonals

Convex smooth minimization over a spectrahedron

Main optimization problem:

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \tag{M}\\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n},
\end{array}
$$

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^{n}$
- trace $\operatorname{tr}(\cdot)$, sum of diagonals
- positive semidefinite matrices \mathbf{S}_{+}^{n}, i.e., symmetric matrices with non-negative eigenvalues

Convex smooth minimization over a spectrahedron

Main optimization problem:

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \tag{M}\\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n},
\end{array}
$$

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^{n}$
- trace $\operatorname{tr}(\cdot)$, sum of diagonals
- positive semidefinite matrices \mathbf{S}_{+}^{n}, i.e., symmetric matrices with non-negative eigenvalues
- unique optimal solution X_{\star}

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \boldsymbol{\operatorname { t r }}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \boldsymbol{\operatorname { t r }}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \boldsymbol{\operatorname { t r }}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \boldsymbol{\operatorname { t r }}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]
- blind deconvolution [ARR13]

Applications

$$
\begin{array}{ll}
\underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\operatorname{minimize}} & f(X):=g(\mathcal{A} X)+\operatorname{tr}(C X) \\
\text { subject to } & \operatorname{tr}(X)=1, \quad \text { and } \quad X \in \mathbf{S}_{+}^{n}, \tag{M}
\end{array}
$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]
- blind deconvolution [ARR13]

Expect rank $r_{\star}=\boldsymbol{\operatorname { r a n k }}\left(X_{\star}\right) \ll n!$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- orthogonal projection: $\mathcal{P}_{\mathcal{S P}^{n}}(X)=\arg \min _{V}\|X-V\|_{F}$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- orthogonal projection: $\mathcal{P}_{\mathcal{S P}^{n}}(X)=\arg \min V\|X-V\|_{F}$
- PG: Choose $X_{0} \in \mathcal{S P}{ }^{n}$ and $\eta>0$, iterate

$$
\begin{equation*}
X_{t+1}=\mathcal{P}_{\mathcal{S P}}{ }^{n}\left(X_{t}-\eta \nabla f\left(X_{t}\right)\right) \tag{PG}
\end{equation*}
$$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- orthogonal projection: $\mathcal{P}_{\mathcal{S P}^{n}}(X)=\arg \min _{V}\|X-V\|_{F}$
- PG: Choose $X_{0} \in \mathcal{S P}{ }^{n}$ and $\eta>0$, iterate

$$
\begin{equation*}
X_{t+1}=\mathcal{P}_{\mathcal{P P}^{n}}\left(X_{t}-\eta \nabla f\left(X_{t}\right)\right) \tag{PG}
\end{equation*}
$$

- iteration complexity $\mathcal{O}\left(\frac{1}{\epsilon}\right)$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- orthogonal projection: $\mathcal{P}_{\mathcal{S P}^{n}}(X)=\arg \min _{V}\|X-V\|_{F}$
- PG: Choose $X_{0} \in \mathcal{S P}{ }^{n}$ and $\eta>0$, iterate

$$
\begin{equation*}
X_{t+1}=\mathcal{P}_{\mathcal{P P}^{n}}\left(X_{t}-\eta \nabla f\left(X_{t}\right)\right) \tag{PG}
\end{equation*}
$$

- iteration complexity $\mathcal{O}\left(\frac{1}{\epsilon}\right)$
- accelerated PG, $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$

Projected Gradient (PG)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- orthogonal projection: $\mathcal{P}_{\mathcal{S P}^{n}}(X)=\arg \min V\|X-V\|_{F}$
- PG: Choose $X_{0} \in \mathcal{S P}{ }^{n}$ and $\eta>0$, iterate

$$
\begin{equation*}
X_{t+1}=\mathcal{P}_{\mathcal{S P}^{n}}\left(X_{t}-\eta \nabla f\left(X_{t}\right)\right) \tag{PG}
\end{equation*}
$$

- iteration complexity $\mathcal{O}\left(\frac{1}{\epsilon}\right)$
- accelerated PG, $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$

Bottleneck: $\mathcal{O}\left(n^{3}\right)$ per iteration due to FULL EVD in $\mathcal{P}_{\mathcal{S} \mathcal{P}^{n}}$!

Projection free method: Frank-Wolfe (FW)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}} \text {, } \tag{M}
\end{equation*}
$$

Projection free method: Frank-Wolfe (FW)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- FW: choose $X_{0} \in \mathcal{S P}^{n}$, iterate
(LOO) Linear Optimization Oracle: $V_{t}=\arg \min _{V \in \mathcal{S} \mathcal{P}^{n}} \operatorname{tr}\left(V \nabla f\left(X_{t}\right)\right)$.

Projection free method: Frank-Wolfe (FW)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- FW: choose $X_{0} \in \mathcal{S P}^{n}$, iterate
(LOO) Linear Optimization Oracle: $V_{t}=\arg \min _{V \in \mathcal{S} \mathcal{P}^{n}} \operatorname{tr}\left(V \nabla f\left(X_{t}\right)\right)$. (LS) Line Search: X_{t+1} solves $\min _{X=\eta X_{t}+(1-\eta) V_{t}, \eta \in[0,1]} f(X)$.
- Low per iteration complexity: LOO only needs to compute one eigenvector of $\nabla f\left(X_{t}\right)$!

Projection free method: Frank-Wolfe (FW)

$$
\begin{equation*}
\operatorname{minimize}_{X \in \mathbf{S}^{n}} f(X) \text { subject to } \underbrace{\operatorname{tr}(X)=1, X \in \mathbf{S}_{+}^{n}}_{\mathcal{S} \mathcal{P}^{n}}, \tag{M}
\end{equation*}
$$

- FW: choose $X_{0} \in \mathcal{S P}^{n}$, iterate
(LOO) Linear Optimization Oracle: $V_{t}=\arg \min _{V \in \mathcal{S} \mathcal{P}^{n}} \operatorname{tr}\left(V \nabla f\left(X_{t}\right)\right)$. (LS) Line Search: X_{t+1} solves $\min _{X=\eta X_{t}+(1-\eta) V_{t}, \eta \in[0,1]} f(X)$.
- Low per iteration complexity: LOO only needs to compute one eigenvector of $\nabla f\left(X_{t}\right)$!

Bottleneck: Slow convergence, $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ iteration complexity in both theory and practice!

FW variants

Many variants:

- Randomized regularized FW [Gar16]
- In-face direction FW [FGM17]
- BlockFW [AZHHL17]
- FW with $r_{\star}=\boldsymbol{r a n k}\left(X_{\star}\right)=1$ [Gar19]

Shortage: No linear convergence or sensitive to input rank estimate

$$
\text { or } r_{\star}=1
$$

Outline

(1) Introduction

- Problem setup
- Past algorithms
(2) SpecFW and strict complementarity
- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity
(3) Numerics
- Experimental setup
- Numerical results

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate - k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Both procedure are easy to solve for small k !

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Both procedure are easy to solve for small k !
Moreover...

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Both procedure are easy to solve for small k !
Moreover...

- $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence for general k.

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Both procedure are easy to solve for small k !
Moreover...

- $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence for general k.
- Linear convergence if $k \geq r_{\star}$!

Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose $X_{0} \in \mathcal{S P}{ }^{n}$, a rank estimate $k>0$, iterate

- k LOO: Compute bottom k eigenvectors $V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbf{R}^{n \times k}$ of $\nabla f\left(X_{t}\right)$.
- k Spectral Search ($k S S$): $X_{t+1}=\eta_{\star} X_{t}+V S_{\star} V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^{k}$ solves

$$
\min f\left(\eta X_{t}+V S V^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{k}, \eta+\operatorname{tr}(S)=1, \eta \geq 0
$$

Both procedure are easy to solve for small k !
Moreover...

- $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence for general k.
- Linear convergence if $k \geq r_{\star}$! (also needs strict complementarity)

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search $(k S S):$
$\min f\left(\eta X_{t}+(1-\eta) v v^{\top}\right)$	$\min f\left(\eta X_{t}+V S V^{\top}\right)$
s.t. $\eta \in[0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_{+}^{k}, \operatorname{tr}(S)+\eta=1$

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search $(k S S):$
$\min f\left(\eta X_{t}+(1-\eta) v v^{\top}\right)$	$\min f\left(\eta X_{t}+V S V^{\top}\right)$
s.t. $\eta \in[0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_{+}^{k}, \operatorname{tr}(S)+\eta=1$

In fact, when $k=1$, SpecFW is FW!

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search $(k S S):$
$\min f\left(\eta X_{t}+(1-\eta) v v^{\top}\right)$	$\min f\left(\eta X_{t}+V S V^{\top}\right)$
s.t. $\eta \in[0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_{+}^{k}, \operatorname{tr}(S)+\eta=1$

In fact, when $k=1$, SpecFW is FW! Expect at least $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence even if $k \leq r_{\star}$.

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search $(k S S):$
$\min f\left(\eta X_{t}+(1-\eta) v v^{\top}\right)$	$\min f\left(\eta X_{t}+V S V^{\top}\right)$
s.t. $\eta \in[0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_{+}^{k}, \operatorname{tr}(S)+\eta=1$

In fact, when $k=1$, SpecFW is FW! Expect at least $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence even if $k \leq r_{\star}$.

How about linear convergence when $k \geq r_{\star}$?

Comparison with FW

Two stronger subproblem oracles:
Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	k LOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search $(k S S):$
$\min f\left(\eta X_{t}+(1-\eta) v v^{\top}\right)$	$\min f\left(\eta X_{t}+V S V^{\top}\right)$
s.t. $\eta \in[0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_{+}^{k}, \operatorname{tr}(S)+\eta=1$

In fact, when $k=1$, SpecFW is FW! Expect at least $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ convergence even if $k \leq r_{\star}$.

How about linear convergence when $k \geq r_{\star}$? What is strict complementarity?

Strict complementarity

Eigenspace of $\nabla f\left(X_{\star}\right)$ for the smallest eigenvalue, $\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \subset \mathbf{R}^{n}$

Strict complementarity

Eigenspace of $\nabla f\left(X_{\star}\right)$ for the smallest eigenvalue, $\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \subset \mathbf{R}^{n}$ $\mathrm{KKT} \Longrightarrow \operatorname{range}\left(X_{\star}\right) \subset \mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right)$

Strict complementarity

Eigenspace of $\nabla f\left(X_{\star}\right)$ for the smallest eigenvalue, $\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \subset \mathbf{R}^{n}$

$$
\begin{aligned}
\mathrm{KKT} & \Longrightarrow \operatorname{range}\left(X_{\star}\right) \subset \mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \\
& \Longrightarrow \underbrace{\operatorname{dim}\left(\operatorname{range}\left(X_{\star}\right)\right)}_{=: r_{\star}} \leq \underbrace{\operatorname{dim}\left(\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right)\right)}_{=: k_{\star}}
\end{aligned}
$$

Note that the smallest eigenvalue has multiplicity at least r_{\star} :

$$
\lambda_{n-r_{\star}+1}\left(\nabla f\left(X_{\star}\right)\right)=\cdots=\lambda_{n}\left(\nabla f\left(X_{\star}\right)\right) .
$$

Here $\lambda_{n-i+1}\left(\nabla f\left(X_{\star}\right)\right)$ is the i-th smallest eigenvalue.

Strict complementarity

Eigenspace of $\nabla f\left(X_{\star}\right)$ for the smallest eigenvalue, $\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \subset \mathbf{R}^{n}$

$$
\begin{aligned}
\mathrm{KKT} & \Longrightarrow \operatorname{range}\left(X_{\star}\right) \subset \mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \\
& \Longrightarrow \underbrace{\operatorname{dim}\left(\operatorname{range}\left(X_{\star}\right)\right)}_{=: r_{\star}} \leq \underbrace{\operatorname{dim}\left(\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right)\right)}_{=: k_{\star}}
\end{aligned}
$$

Note that the smallest eigenvalue has multiplicity at least r_{\star} :

$$
\lambda_{n-r_{\star}+1}\left(\nabla f\left(X_{\star}\right)\right)=\cdots=\lambda_{n}\left(\nabla f\left(X_{\star}\right)\right) .
$$

Here $\lambda_{n-i+1}\left(\nabla f\left(X_{\star}\right)\right)$ is the i-th smallest eigenvalue.
Strict complementarity (st. comp.) is $r_{\star}=k_{\star}$.

Strict complementarity

Eigenspace of $\nabla f\left(X_{\star}\right)$ for the smallest eigenvalue, $\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \subset \mathbf{R}^{n}$

$$
\begin{aligned}
\mathrm{KKT} & \Longrightarrow \operatorname{range}\left(X_{\star}\right) \subset \mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right) \\
& \Longrightarrow \underbrace{\operatorname{dim}\left(\boldsymbol{\operatorname { r a n g e }}\left(X_{\star}\right)\right)}_{=: r_{\star}} \leq \underbrace{\operatorname{dim}\left(\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right)\right)}_{=: k_{\star}}
\end{aligned}
$$

Note that the smallest eigenvalue has multiplicity at least r_{\star} :

$$
\lambda_{n-r_{\star}+1}\left(\nabla f\left(X_{\star}\right)\right)=\cdots=\lambda_{n}\left(\nabla f\left(X_{\star}\right)\right) .
$$

Here $\lambda_{n-i+1}\left(\nabla f\left(X_{\star}\right)\right)$ is the i-th smallest eigenvalue.
Strict complementarity (st. comp.) is $r_{\star}=k_{\star}$.
More concretely, st. comp. is an eigengap condition on r_{\star}-th and $r_{\star}+1$-th smallest eigenvalue:

$$
\lambda_{n-r_{\star}}\left(\nabla f\left(X_{\star}\right)\right)-\lambda_{n-r_{\star}+1}\left(\nabla f\left(X_{\star}\right)\right)>0 .
$$

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:
(1) $\operatorname{range}\left(X_{\star}\right)=\operatorname{EV}\left(\nabla f\left(X_{\star}\right)\right)$

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:
(1) $\operatorname{range}\left(X_{\star}\right)=\operatorname{EV}\left(\nabla f\left(X_{\star}\right)\right)$
(2) Compute $V_{\star}=\left[v_{1}, \ldots, v_{k_{\star}}\right]$, the bottom eigenvectors of $\nabla f\left(X_{\star}\right)$.

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:
(1) $\operatorname{range}\left(X_{\star}\right)=\mathbf{E V}\left(\nabla f\left(X_{\star}\right)\right)$
(2) Compute $V_{\star}=\left[v_{1}, \ldots, v_{k_{\star}}\right]$, the bottom eigenvectors of $\nabla f\left(X_{\star}\right)$.
(3) $X_{\star}=V_{\star} S_{\star} V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S)=1$

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:
(1) $\operatorname{range}\left(X_{\star}\right)=\operatorname{EV}\left(\nabla f\left(X_{\star}\right)\right)$
(2) Compute $V_{\star}=\left[v_{1}, \ldots, v_{k_{\star}}\right]$, the bottom eigenvectors of $\nabla f\left(X_{\star}\right)$.
(3) $X_{\star}=V_{\star} S_{\star} V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S)=1$
(9) Obtain S_{\star} by solving

$$
\left.\operatorname{minimize} \quad f\left(V_{\star} S_{\star} V_{\star}^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S)=1 . \quad \text { (reduced } \mathrm{M}\right)
$$

(5) Problem (M) is solved given $\nabla f\left(X_{\star}\right)$!

Intuition of linear convergence

Under strict complementarity $r_{\star}=k_{\star}$:
(1) $\operatorname{range}\left(X_{\star}\right)=\operatorname{EV}\left(\nabla f\left(X_{\star}\right)\right)$
(2) Compute $V_{\star}=\left[v_{1}, \ldots, v_{k_{\star}}\right]$, the bottom eigenvectors of $\nabla f\left(X_{\star}\right)$.
(3) $X_{\star}=V_{\star} S_{\star} V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S)=1$
(9) Obtain S_{\star} by solving

$$
\left.\operatorname{minimize} \quad f\left(V_{\star} S_{\star} V_{\star}^{\top}\right) \quad \text { s.t. } \quad S \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S)=1 . \quad \text { (reduced } \mathrm{M}\right)
$$

(6) Problem (M) is solved given $\nabla f\left(X_{\star}\right)$!

SpecFW is simply algorithimic procedures for step 2 and 4 !

Outline

(1) Introduction

- Problem setup
- Past algorithms
(2) SpecFW and strict complementarity
- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity
(3) Numerics
- Experimental setup
- Numerical results

Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank $r_{\square}=3$ matrix $U_{\text {घ }} \in \mathbf{R}^{n \times r_{\natural}}$ with $\left\|U_{\mathrm{G}}\right\|_{\mathrm{F}}^{2}=1$ from quadratic measurement $y \in \mathbf{R}^{m}$

Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank $r_{\square}=3$ matrix $U_{\sharp} \in \mathbf{R}^{n \times r_{\natural}}$ with $\left\|U_{\sharp}\right\|_{\mathrm{F}}^{2}=1$ from quadratic measurement $y \in \mathbf{R}^{m}$
(1) random standard gaussian measurements a_{i}
(2) $y_{0}(i)=\left\|U_{\natural}^{\top} a_{i}\right\|_{\mathrm{F}}^{2}, i=1, \ldots, m, m=15 n r_{\square}$

Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank $r_{\square}=3$ matrix $U_{\natural} \in \mathbf{R}^{n \times r_{\natural}}$ with $\left\|U_{\sharp}\right\|_{\mathrm{F}}^{2}=1$ from quadratic measurement $y \in \mathbf{R}^{m}$
(1) random standard gaussian measurements a_{i}
(2) $y_{0}(i)=\left\|U_{\natural}^{\top} a_{i}\right\|_{\mathrm{F}}^{2}, i=1, \ldots, m, m=15 n r_{\text {口 }}$
(3) $y=y_{0}+c\left\|y_{0}\right\|_{2} v, c$ is the inverse signal-to-noise ratio, v is a random unit vector

Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank $r_{G}=3$ matrix $U_{\sharp} \in \mathbf{R}^{n \times r_{G}}$ with $\left\|U_{\sharp}\right\|_{\mathrm{F}}^{2}=1$ from quadratic measurement $y \in \mathbf{R}^{m}$
(1) random standard gaussian measurements a_{i}
(2) $y_{0}(i)=\left\|U_{\square}^{\top} a_{i}\right\|_{\mathrm{F}}^{2}, i=1, \ldots, m, m=15 n r_{\text {口 }}$
(3) $y=y_{0}+c\left\|y_{0}\right\|_{2} v, c$ is the inverse signal-to-noise ratio, v is a random unit vector
Optimization problem:

$$
\text { minimize } f(X):=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i}^{\top} X a_{i}-y_{i}\right)^{2}
$$

(Quadratic Sensing)
subject to $\quad \operatorname{tr}(X)=\tau, \quad X \succeq 0$.
Set $\tau=\frac{1}{2}$ and $c=0.5$ in numerics.

Low rank solution and strict complementarity

Dimension n	Avg. gap	Avg. recovery error
100	288.06	0.0013
200	505.16	0.00064
400	961.09	0.00031
600	1358.62	0.00021

Table: Verification of low rankness and strict complementarity. Rank $r_{\star}=3$ in all experiments. The recovery error is measured by $\frac{\left\|\frac{X_{\star}}{T}-U_{\natural} U_{\natural}^{\top}\right\|_{F}}{\left\|U_{\natural} U_{\natural}^{\top}\right\|_{F}}$. The gap is measured by $\lambda_{n-3}\left(\nabla f\left(X_{\star}\right)\right)-\lambda_{n}\left(\nabla f\left(X_{\star}\right)\right)$. All the results are averaged over 20 iid trials.

Numerical results $k>r_{\star}$

Figure: $k>r_{\star}$. comparison of algorithms FW, G-blockFW [AZHHL17], and SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.

Numerical results $k<r_{\star}$

Figure: $k<r_{\star}$. comparison of algorithms FW, G-blockFW [AZHHL17], and SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.

References I

曽 Ali Ahmed，Benjamin Recht，and Justin Romberg．
Blind deconvolution using convex programming．
IEEE Transactions on Information Theory，60（3）：1711－1732， 2013.
雷 Zeyuan Allen－Zhu，Elad Hazan，Wei Hu，and Yuanzhi Li．
Linear convergence of a frank－wolfe type algorithm over trace－norm balls．
In Advances in Neural Information Processing Systems，pages 6191－6200， 2017.
直 Yuxin Chen，Yuejie Chi，and Andrea J Goldsmith．
Exact and stable covariance estimation from quadratic sampling via convex programming．
IEEE Transactions on Information Theory，61（7）：4034－4059， 2015.

References II

Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski.
Phase retrieval via matrix completion.
SIAM review, 57(2):225-251, 2015.
Emmanuel J Candès and Benjamin Recht.
Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717, 2009.
(1. Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters.
1-bit matrix completion.
Information and Inference: A Journal of the IMA, 3(3):189-223, 2014.

References III

Robert M Freund, Paul Grigas, and Rahul Mazumder.
An extended frank-wolfe method with "in-face" directions, and its application to low-rank matrix completion.
SIAM Journal on optimization, 27(1):319-346, 2017.
目 Dan Garber.
Faster projection-free convex optimization over the spectrahedron.
In Advances in Neural Information Processing Systems, pages
874-882, 2016.
目 Dan Garber.
Linear convergence of frank-wolfe for rank-one matrix recovery without strong convexity.
arXiv preprint arXiv:1912.01467, 2019.

References IV

Rel Martin Jaggi and Marek Sulovskỳ.
A simple algorithm for nuclear norm regularized problems. 2010.

Renjamin Recht, Maryam Fazel, and Pablo A Parrilo.
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.
SIAM review, 52(3):471-501, 2010.
Alp Yurtsever, Madeleine Udell, Joel Tropp, and Volkan Cevher. Sketchy decisions: Convex low-rank matrix optimization with optimal storage.
In Artificial Intelligence and Statistics, pages 1188-1196, 2017.

