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Convex smooth minimization over a spectrahedron

Main optimization problem:

minimize
X∈Sn⊂Rn×n

f (X ) := g(AX ) + tr(CX )

subject to tr(X ) = 1, and X ∈ Sn
+,

(M)

function g strongly convex and smooth

linear map A and matrix C ∈ Sn

trace tr(·), sum of diagonals

positive semidefinite matrices Sn
+, i.e., symmetric matrices with

non-negative eigenvalues

unique optimal solution X?
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Applications

minimize
X∈Sn⊂Rn×n

f (X ) := g(AX ) + tr(CX )

subject to tr(X ) = 1, and X ∈ Sn
+,

(M)

matrix sensing [RFP10]

matrix completion [CR09, JS10]

phase retrieval [CESV15, YUTC17]

one-bit matrix completion [DPVDBW14]

blind deconvolution [ARR13]

Expect rank r? = rank(X?)� n!
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Projected Gradient (PG)

minimizeX∈Sn f (X ) subject to tr(X ) = 1, X ∈ Sn
+︸ ︷︷ ︸

SPn

,
(M)

orthogonal projection: PSPn(X ) = arg minV ‖X − V ‖
F

PG: Choose X0 ∈ SPn and η > 0, iterate

Xt+1 = PSPn (Xt − η∇f (Xt)) . (PG)

iteration complexity O(1ε )

accelerated PG, O( 1√
ε
)

Bottleneck: O(n3) per iteration due to FULL EVD in PSPn!
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Projection free method: Frank-Wolfe (FW)

minimizeX∈Sn f (X ) subject to tr(X ) = 1, X ∈ Sn
+︸ ︷︷ ︸

SPn

,
(M)

FW: choose X0 ∈ SPn, iterate

(LOO) Linear Optimization Oracle: Vt = arg minV∈SPn tr(V∇f (Xt)).
(LS) Line Search: Xt+1 solves minX=ηXt+(1−η)Vt ,η∈[0,1] f (X ).

Low per iteration complexity: LOO only needs to compute one
eigenvector of ∇f (Xt)!

Bottleneck: Slow convergence, O(1ε ) iteration complexity
in both theory and practice!
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FW variants

Many variants:

Randomized regularized FW [Gar16]

In-face direction FW [FGM17]

BlockFW [AZHHL17]

FW with r? = rank(X?) = 1 [Gar19]

Shortage: No linear convergence or sensitive to input rank estimate
or r? = 1.
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Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose X0 ∈ SPn, a rank estimate k > 0, iterate

kLOO: Compute bottom k eigenvectors V = [v1, . . . , vk ] ∈ Rn×k of
∇f (Xt).

k Spectral Search (kSS): Xt+1 = η?Xt + VS?V
>, in which

η? ∈ R,S? ∈ Sk solves

min f (ηXt + VSV>) s.t. S ∈ Sk
+, η + tr(S) = 1, η ≥ 0.

Both procedure are easy to solve for small k!

Moreover...

O(1ε ) convergence for general k.

Linear convergence if k ≥ r?! (also needs strict complementarity)
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Comparison with FW

Two stronger subproblem oracles:

Table: Comparison with FW

FW SpecFW
LOO: Compute one eigenvector v kLOO: Compute k eigenvectors V

Line Search (LS): k Spectral Search (kSS):
min f (ηXt + (1− η)vv>) min f (ηXt + VSV>)

s.t. η ∈ [0, 1] s.t. η ≥ 0,S ∈ Sk
+, tr(S) + η = 1

In fact, when k = 1, SpecFW is FW! Expect at least O(1ε ) convergence
even if k ≤ r?.

How about linear convergence when k ≥ r??
What is strict complementarity?
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Strict complementarity

Eigenspace of ∇f (X?) for the smallest eigenvalue, EV(∇f (X?)) ⊂ Rn

KKT =⇒ range(X?) ⊂ EV(∇f (X?))

=⇒ dim(range(X?))︸ ︷︷ ︸
=:r?

≤ dim(EV(∇f (X?)))︸ ︷︷ ︸
=:k?

Note that the smallest eigenvalue has multiplicity at least r?:

λn−r?+1(∇f (X?)) = · · · = λn(∇f (X?)).

Here λn−i+1(∇f (X?)) is the i-th smallest eigenvalue.

Strict complementarity (st. comp.) is r? = k?.

More concretely, st. comp. is an eigengap condition on r?-th and r? + 1-th
smallest eigenvalue:

λn−r?(∇f (X?))− λn−r?+1(∇f (X?)) > 0.
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λn−r?(∇f (X?))− λn−r?+1(∇f (X?)) > 0.
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Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Intuition of linear convergence

Under strict complementarity r? = k?:

1 range(X?) = EV(∇f (X?))

2 Compute V? = [v1, . . . , vk? ], the bottom eigenvectors of ∇f (X?).

3 X? = V?S?V
>
? for some S? ∈ Sr?

+ , tr(S) = 1

4 Obtain S? by solving

minimize f (V?S?V
>
? ) s.t. S ∈ Sr?

+ , tr(S) = 1. (reduced M)

5 Problem (M) is solved given ∇f (X?)!

SpecFW is simply algorithimic procedures for step 2 and 4!

Lijun Ding (Cornell University) SpecFW June 15, 2020 12 / 17



Outline

1 Introduction
Problem setup
Past algorithms

2 SpecFW and strict complementarity
Spectral Frank-Wolfe (SpecFW)
Strict complementarity

3 Numerics
Experimental setup
Numerical results

Lijun Ding (Cornell University) SpecFW June 15, 2020 13 / 17



Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank r\ = 3 matrix U\ ∈ Rn×r\ with

‖U\‖2F = 1 from quadratic measurement y ∈ Rm

1 random standard gaussian measurements ai

2 y0(i) =
∥∥∥U>\ ai∥∥∥2

F

, i = 1, . . . ,m, m = 15nr\

3 y = y0 + c ‖y0‖2 v , c is the inverse signal-to-noise ratio, v is a
random unit vector

Optimization problem:

minimize f (X ) :=
1

2

m∑
i=1

(
a>i Xai − yi

)2
subject to tr(X ) = τ, X � 0.

(Quadratic Sensing)

Set τ = 1
2 and c = 0.5 in numerics.
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Low rank solution and strict complementarity

Dimension n Avg. gap Avg. recovery error

100 288.06 0.0013
200 505.16 0.00064
400 961.09 0.00031
600 1358.62 0.00021

Table: Verification of low rankness and strict complementarity. Rank r? = 3 in all

experiments. The recovery error is measured by
‖ X?
τ −U\U

>
\ ‖F

‖U\U>
\ ‖F

. The gap is

measured by λn−3(∇f (X?))− λn(∇f (X?)). All the results are averaged over 20
iid trials.
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Numerical results k > r?
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Figure: k > r?. comparison of algorithms FW, G-blockFW [AZHHL17], and
SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.
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Numerical results k < r?
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