Spectral Frank-Wolfe Algorithm: Strict Complementarity and Linear Convergence

Lijun Ding

Joint work with Yingjie Fei, Qiantong Xu, and Chengrun Yang

June 15, 2020

Introduction

- Problem setup
- Past algorithms

2 SpecFW and strict complementarity

- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity

Numerics

- Experimental setup
- Numerical results

Convex smooth minimization over a spectrahedron

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}_{+}^{n}, \end{array}$$
(M)

• function g strongly convex and smooth

$$\begin{array}{ll} \text{minimize} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ x \in \mathbf{S}^n \subset \mathbf{R}^{n \times n} & \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^n_+, \end{array}$$
(M)

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^n$

$$\begin{array}{ll} \text{minimize} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ x \in \mathbf{S}^n \subset \mathbf{R}^{n \times n} & \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^n_+, \end{array}$$
(M)

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^n$
- trace $tr(\cdot)$, sum of diagonals

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(\mathcal{C}X) \\ \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}_{+}^{n}, \end{array}$$
(M)

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $C \in \mathbf{S}^n$
- trace $tr(\cdot)$, sum of diagonals
- positive semidefinite matrices **S**ⁿ₊, i.e., symmetric matrices with non-negative eigenvalues

$$\begin{array}{ll} \text{minimize} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ x \in \mathbf{S}^n \subset \mathbf{R}^{n \times n} & \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^n_+, \end{array}$$
(M)

- function g strongly convex and smooth
- linear map \mathcal{A} and matrix $\mathcal{C} \in \mathbf{S}^n$
- trace $tr(\cdot)$, sum of diagonals
- positive semidefinite matrices Sⁿ₊, i.e., symmetric matrices with non-negative eigenvalues
- **unique** optimal solution X_{\star}

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^{n}_{+}, \end{array}$$
(M)

メロト メポト メヨト メヨト

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \mathsf{tr}(\mathcal{C}X) \\ \text{subject to} & \mathsf{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^{n}_{+}, \end{array}$$

• matrix sensing [RFP10]

Image: A match a ma

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}_{+}^{n}, \end{array}$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]

< A > < E

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(\mathcal{C}X) \\ \text{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}_{+}^{n}, \end{array}$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]

$$\begin{array}{ll} \underset{X \in \mathbf{S}^n \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(X) = 1, \text{ and } X \in \mathbf{S}^n_+, \end{array}$$

- matrix sensing [RFP10]
- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(CX) \\ \operatorname{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}^{n}_{+}, \end{array}$$

• matrix sensing [RFP10]

- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]
- blind deconvolution [ARR13]

$$\begin{array}{ll} \underset{X \in \mathbf{S}^{n} \subset \mathbf{R}^{n \times n}}{\text{subject to}} & f(X) := g(\mathcal{A}X) + \operatorname{tr}(\mathcal{C}X) \\ \operatorname{subject to} & \operatorname{tr}(X) = 1, \quad \text{and} \quad X \in \mathbf{S}_{+}^{n}, \end{array}$$

• matrix sensing [RFP10]

- matrix completion [CR09, JS10]
- phase retrieval [CESV15, YUTC17]
- one-bit matrix completion [DPVDBW14]
- blind deconvolution [ARR13]

```
Expect rank r_{\star} = \operatorname{rank}(X_{\star}) \ll n!
```

minimize_{X \in **S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

Image: A mathematical states and a mathem

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

• orthogonal projection: $\mathcal{P}_{S\mathcal{P}^n}(X) = \arg\min_V \|X - V\|_{F}$

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

- orthogonal projection: $\mathcal{P}_{S\mathcal{P}^n}(X) = \arg\min_V \|X V\|_{F}$
- PG: Choose $X_0 \in SP^n$ and $\eta > 0$, iterate

$$X_{t+1} = \mathcal{P}_{\mathcal{SP}^n} \left(X_t - \eta \nabla f(X_t) \right). \tag{PG}$$

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

• orthogonal projection: $\mathcal{P}_{\mathcal{SP}^n}(X) = \arg\min_V \|X - V\|_{\mathsf{F}}$

• PG: Choose $X_0 \in SP^n$ and $\eta > 0$, iterate

$$X_{t+1} = \mathcal{P}_{\mathcal{SP}^n} \left(X_t - \eta \nabla f(X_t) \right). \tag{PG}$$

• iteration complexity $\mathcal{O}(\frac{1}{\epsilon})$

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

- orthogonal projection: $\mathcal{P}_{\mathcal{SP}^n}(X) = \arg\min_V \|X V\|_{\mathsf{F}}$
- PG: Choose $X_0 \in SP^n$ and $\eta > 0$, iterate

$$X_{t+1} = \mathcal{P}_{\mathcal{SP}^n} \left(X_t - \eta \nabla f(X_t) \right). \tag{PG}$$

- iteration complexity $\mathcal{O}(\frac{1}{\epsilon})$
- accelerated PG, $\mathcal{O}(\frac{1}{\sqrt{\epsilon}})$

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

- orthogonal projection: $\mathcal{P}_{\mathcal{SP}^n}(X) = \arg\min_V \|X V\|_{\mathsf{F}}$
- PG: Choose $X_0 \in SP^n$ and $\eta > 0$, iterate

$$X_{t+1} = \mathcal{P}_{\mathcal{SP}^n} \left(X_t - \eta \nabla f(X_t) \right). \tag{PG}$$

- iteration complexity $\mathcal{O}(\frac{1}{\epsilon})$
- accelerated PG, $\mathcal{O}(\frac{1}{\sqrt{\epsilon}})$

Bottleneck: $\mathcal{O}(n^3)$ per iteration due to FULL EVD in $\mathcal{P}_{S\mathcal{P}^n}$!

Projection free method: Frank-Wolfe (FW)

minimize_{X \in **S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

Image: A matrix and a matrix

Projection free method: Frank-Wolfe (FW)

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

• FW: choose $X_0 \in S\mathcal{P}^n$, iterate (LOO) Linear Optimization Oracle: $V_t = \arg \min_{V \in S\mathcal{P}^n} \operatorname{tr}(V \nabla f(X_t))$.

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

• FW: choose $X_0 \in SP^n$, iterate (LOO) Linear Optimization Oracle: $V_t = \arg \min_{V \in SP^n} \operatorname{tr}(V \nabla f(X_t))$. (LS) Line Search: X_{t+1} solves $\min_{X=\eta X_t+(1-\eta)V_t, \eta \in [0,1]} f(X)$.

 Low per iteration complexity: LOO only needs to compute one eigenvector of ∇f(X_t)!

minimize_{X∈**S**ⁿ}
$$f(X)$$
 subject to $\underbrace{\operatorname{tr}(X) = 1, X \in \mathbf{S}^{n}_{+}}_{S\mathcal{P}^{n}}$, (M)

• FW: choose $X_0 \in SP^n$, iterate (LOO) Linear Optimization Oracle: $V_t = \arg \min_{V \in SP^n} \operatorname{tr}(V \nabla f(X_t))$. (LS) Line Search: X_{t+1} solves $\min_{X=\eta X_t+(1-\eta)V_t, \eta \in [0,1]} f(X)$.

 Low per iteration complexity: LOO only needs to compute one eigenvector of ∇f(X_t)!

Bottleneck: Slow convergence, $\mathcal{O}(\frac{1}{\epsilon})$ iteration complexity in both theory and practice!

Many variants:

- Randomized regularized FW [Gar16]
- In-face direction FW [FGM17]
- BlockFW [AZHHL17]
- FW with $r_{\star} = \operatorname{rank}(X_{\star}) = 1$ [Gar19]

Shortage: No linear convergence or sensitive to input rank estimate

or
$$r_{\star} = 1$$
.

Outline

Introduction

- Problem setup
- Past algorithms

2 SpecFW and strict complementarity

- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity

Numerics

- Experimental setup
- Numerical results

• *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

min
$$f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0.$

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

min
$$f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0$.

Both procedure are easy to solve for small k!

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

$$\min f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0.$

Both procedure are easy to solve for small k!

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

$$\min f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0.$

Both procedure are easy to solve for small k!

•
$$\mathcal{O}(\frac{1}{\epsilon})$$
 convergence for general k.

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

min
$$f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0.$

Both procedure are easy to solve for small k!

- $\mathcal{O}(\frac{1}{\epsilon})$ convergence for general k.
- Linear convergence if $k \ge r_*$!

- *k*LOO: Compute bottom *k* eigenvectors $V = [v_1, \ldots, v_k] \in \mathbf{R}^{n \times k}$ of $\nabla f(X_t)$.
- *k* Spectral Search (*k*SS): $X_{t+1} = \eta_{\star}X_t + VS_{\star}V^{\top}$, in which $\eta_{\star} \in \mathbf{R}, S_{\star} \in \mathbf{S}^k$ solves

$$\min f(\eta X_t + VSV^{\top})$$
 s.t. $S \in \mathbf{S}_+^k, \eta + \operatorname{tr}(S) = 1, \eta \ge 0.$

Both procedure are easy to solve for small k!

- $\mathcal{O}(\frac{1}{\epsilon})$ convergence for general k.
- Linear convergence if $k \ge r_*!$ (also needs strict complementarity)

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search (kSS):
$\min f(\eta X_t + (1-\eta) v v^\top)$	$\min f(\eta X_t + VSV^ op)$
s.t. $\eta \in [0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}^k_+, tr(S) + \eta = 1$

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search (kSS):
$\min f(\eta X_t + (1 - \eta) v v^\top)$	$\min f(\eta X_t + VSV^\top)$
s.t. $\eta \in [0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}^k_+, tr(S) + \eta = 1$

In fact, when k = 1, SpecFW is FW!

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search (kSS):
$\min f(\eta X_t + (1 - \eta) v v^\top)$	$\min f(\eta X_t + VSV^ op)$
s.t. $\eta \in [0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}^k_+, tr(S) + \eta = 1$

In fact, when k = 1, SpecFW is FW! Expect at least $\mathcal{O}(\frac{1}{\epsilon})$ convergence even if $k \leq r_{\star}$.

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search (kSS):
$\min f(\eta X_t + (1 - \eta) v v^\top)$	$\min f(\eta X_t + VSV^\top)$
s.t. $\eta \in [0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}_+^k, tr(S) + \eta = 1$

In fact, when k = 1, SpecFW is FW! Expect at least $\mathcal{O}(\frac{1}{\epsilon})$ convergence even if $k \leq r_{\star}$.

How about linear convergence when $k \ge r_{\star}$?

Table: Comparison with FW

FW	SpecFW
LOO: Compute one eigenvector v	kLOO: Compute k eigenvectors V
Line Search (LS):	k Spectral Search (kSS):
$\min f(\eta X_t + (1 - \eta) v v^\top)$	$\min f(\eta X_t + VSV^ op)$
s.t. $\eta \in [0,1]$	s.t. $\eta \geq 0, S \in \mathbf{S}^k_+, tr(S) + \eta = 1$

In fact, when k = 1, SpecFW is FW! Expect at least $\mathcal{O}(\frac{1}{\epsilon})$ convergence even if $k \leq r_{\star}$.

How about linear convergence when $k \ge r_*$? What is strict complementarity?

Eigenspace of $\nabla f(X_{\star})$ for the smallest eigenvalue, $\mathsf{EV}(\nabla f(X_{\star})) \subset \mathsf{R}^n$

э

Eigenspace of $\nabla f(X_{\star})$ for the smallest eigenvalue, $\mathbf{EV}(\nabla f(X_{\star})) \subset \mathbf{R}^n$

 $\mathsf{KKT} \implies \mathsf{range}(X_\star) \subset \mathsf{EV}(\nabla f(X_\star))$

э

Eigenspace of $\nabla f(X_{\star})$ for the smallest eigenvalue, $\mathsf{EV}(\nabla f(X_{\star})) \subset \mathsf{R}^n$

$$\mathsf{KKT} \implies \operatorname{range}(X_{\star}) \subset \mathsf{EV}(\nabla f(X_{\star}))$$
$$\implies \underbrace{\dim(\operatorname{range}(X_{\star}))}_{=:r_{\star}} \leq \underbrace{\dim(\mathsf{EV}(\nabla f(X_{\star})))}_{=:k_{\star}}$$

Note that the smallest eigenvalue has multiplicity at least r_{\star} :

$$\lambda_{n-r_{\star}+1}(\nabla f(X_{\star})) = \cdots = \lambda_n(\nabla f(X_{\star})).$$

Here $\lambda_{n-i+1}(\nabla f(X_*))$ is the *i*-th smallest eigenvalue.

Eigenspace of $\nabla f(X_{\star})$ for the smallest eigenvalue, $\mathsf{EV}(\nabla f(X_{\star})) \subset \mathsf{R}^n$

$$\mathsf{KKT} \implies \operatorname{range}(X_{\star}) \subset \mathsf{EV}(\nabla f(X_{\star}))$$
$$\implies \underbrace{\dim(\operatorname{range}(X_{\star}))}_{=:r_{\star}} \leq \underbrace{\dim(\mathsf{EV}(\nabla f(X_{\star})))}_{=:k_{\star}}$$

Note that the smallest eigenvalue has multiplicity at least r_* :

$$\lambda_{n-r_{\star}+1}(\nabla f(X_{\star})) = \cdots = \lambda_n(\nabla f(X_{\star})).$$

Here $\lambda_{n-i+1}(\nabla f(X_*))$ is the *i*-th smallest eigenvalue.

Strict complementarity (st. comp.) is $r_{\star} = k_{\star}$.

Eigenspace of $\nabla f(X_{\star})$ for the smallest eigenvalue, $\mathsf{EV}(\nabla f(X_{\star})) \subset \mathsf{R}^n$

$$\mathsf{KKT} \implies \operatorname{range}(X_{\star}) \subset \mathsf{EV}(\nabla f(X_{\star}))$$
$$\implies \underbrace{\dim(\operatorname{range}(X_{\star}))}_{=:r_{\star}} \leq \underbrace{\dim(\mathsf{EV}(\nabla f(X_{\star})))}_{=:k_{\star}}$$

Note that the smallest eigenvalue has multiplicity at least r_* :

$$\lambda_{n-r_{\star}+1}(\nabla f(X_{\star})) = \cdots = \lambda_n(\nabla f(X_{\star})).$$

Here $\lambda_{n-i+1}(\nabla f(X_{\star}))$ is the *i*-th smallest eigenvalue.

Strict complementarity (st. comp.) is $r_{\star} = k_{\star}$.

More concretely, st. comp. is an eigengap condition on r_{\star} -th and r_{\star} + 1-th smallest eigenvalue:

$$\lambda_{n-r_{\star}}(\nabla f(X_{\star})) - \lambda_{n-r_{\star}+1}(\nabla f(X_{\star})) > 0.$$

Intuition of linear convergence

Under strict complementarity $r_{\star} = k_{\star}$:

• range $(X_{\star}) = \mathsf{EV}(\nabla f(X_{\star}))$

- range $(X_{\star}) = \mathsf{EV}(\nabla f(X_{\star}))$
- **2** Compute $V_{\star} = [v_1, \ldots, v_{k_{\star}}]$, the bottom eigenvectors of $\nabla f(X_{\star})$.

• range
$$(X_{\star}) = \mathsf{EV}(
abla f(X_{\star}))$$

2 Compute $V_{\star} = [v_1, \ldots, v_{k_{\star}}]$, the bottom eigenvectors of $\nabla f(X_{\star})$.

• $X_{\star} = V_{\star}S_{\star}V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}$, $\operatorname{tr}(S) = 1$

- range $(X_{\star}) = \mathsf{EV}(\nabla f(X_{\star}))$
- **3** Compute $V_{\star} = [v_1, \ldots, v_{k_{\star}}]$, the bottom eigenvectors of $\nabla f(X_{\star})$.
- **3** $X_{\star} = V_{\star}S_{\star}V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}$, $\mathbf{tr}(S) = 1$
- Obtain S_{\star} by solving

minimize $f(V_{\star}S_{\star}V_{\star}^{\top})$ s.t. $S \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S) = 1.$ (reduced M)

• Problem (M) is solved given $\nabla f(X_*)$!

- range $(X_{\star}) = \mathsf{EV}(\nabla f(X_{\star}))$
- **3** Compute $V_{\star} = [v_1, \ldots, v_{k_{\star}}]$, the bottom eigenvectors of $\nabla f(X_{\star})$.
- **3** $X_{\star} = V_{\star}S_{\star}V_{\star}^{\top}$ for some $S_{\star} \in \mathbf{S}_{+}^{r_{\star}}$, $\mathbf{tr}(S) = 1$
- Obtain S_{\star} by solving

minimize $f(V_{\star}S_{\star}V_{\star}^{\top})$ s.t. $S \in \mathbf{S}_{+}^{r_{\star}}, \operatorname{tr}(S) = 1.$ (reduced M)

• Problem (M) is solved given $\nabla f(X_*)$!

SpecFW is simply algorithimic procedures for step 2 and 4!

Outline

Introduction

- Problem setup
- Past algorithms

SpecFW and strict complementarity

- Spectral Frank-Wolfe (SpecFW)
- Strict complementarity

Numerics

- Experimental setup
- Numerical results

Quadratic Sensing [CCG15]: recover a rank $r_{\natural} = 3$ matrix $U_{\natural} \in \mathbf{R}^{n \times r_{\natural}}$ with $\|U_{\natural}\|_{F}^{2} = 1$ from quadratic measurement $y \in \mathbf{R}^{m}$

Quadratic Sensing [CCG15]: recover a rank $r_{\natural} = 3$ matrix $U_{\natural} \in \mathbf{R}^{n \times r_{\natural}}$ with $\|U_{\natural}\|_{\mathsf{F}}^2 = 1$ from quadratic measurement $y \in \mathbf{R}^m$

() random standard gaussian measurements a_i

2
$$y_0(i) = \left\| U_{\natural}^{\top} a_i \right\|_{F}^2, i = 1, ..., m, m = 15 nr_{\natural}$$

Quadratic Sensing [CCG15]: recover a rank $r_{\natural} = 3$ matrix $U_{\natural} \in \mathbf{R}^{n \times r_{\natural}}$ with $\|U_{\natural}\|_{F}^{2} = 1$ from quadratic measurement $y \in \mathbf{R}^{m}$

() random standard gaussian measurements a_i

2
$$y_0(i) = \left\| U_{\natural}^{\top} a_i \right\|_{\mathsf{F}}^2, i = 1, \dots, m, m = 15 n r_{\natural}$$

• $y = y_0 + c ||y_0||_2 v$, c is the inverse signal-to-noise ratio, v is a random unit vector

Quadratic Sensing [CCG15]: recover a rank $r_{\natural} = 3$ matrix $U_{\natural} \in \mathbf{R}^{n \times r_{\natural}}$ with $\|U_{\natural}\|_{F}^{2} = 1$ from quadratic measurement $y \in \mathbf{R}^{m}$

() random standard gaussian measurements a_i

2
$$y_0(i) = \left\| U_{\natural}^{\top} a_i \right\|_{F}^2, i = 1, \dots, m, m = 15 n r_{\natural}$$

• $y = y_0 + c ||y_0||_2 v$, c is the inverse signal-to-noise ratio, v is a random unit vector

Optimization problem:

minimize
$$f(X) := \frac{1}{2} \sum_{i=1}^{m} (a_i^\top X a_i - y_i)^2$$
 (Quadratic Sensing)
subject to $\mathbf{tr}(X) = \tau, \quad X \succeq 0.$

Set $\tau = \frac{1}{2}$ and c = 0.5 in numerics.

Dimension n	Avg. gap	Avg. recovery error
100	288.06	0.0013
200	505.16	0.00064
400	961.09	0.00031
600	1358.62	0.00021

Table: Verification of low rankness and strict complementarity. Rank $r_{\star} = 3$ in all experiments. The recovery error is measured by $\frac{\left\|\frac{X_{\star}}{\tau} - U_{\natural} U_{\natural}^{\top}\right\|_{\mathsf{F}}}{\left\|U_{\natural} U_{\natural}^{\top}\right\|_{\mathsf{F}}}$. The gap is measured by $\lambda_{n-3}(\nabla f(X_{\star})) - \lambda_n(\nabla f(X_{\star}))$. All the results are averaged over 20 iid trials.

Numerical results $k > r_{\star}$

Figure: $k > r_{\star}$. comparison of algorithms FW, G-blockFW [AZHHL17], and SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.

Numerical results $k < r_{\star}$

Figure: $k < r_{\star}$. comparison of algorithms FW, G-blockFW [AZHHL17], and SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.

Lijun Ding (Cornell University)

June 15, 2020 17 / 1

- - Ali Ahmed, Benjamin Recht, and Justin Romberg. Blind deconvolution using convex programming. *IEEE Transactions on Information Theory*, 60(3):1711–1732, 2013.
 - Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence of a frank-wolfe type algorithm over trace-norm balls.

In Advances in Neural Information Processing Systems, pages 6191–6200, 2017.

Yuxin Chen, Yuejie Chi, and Andrea J Goldsmith. Exact and stable covariance estimation from quadratic sampling via convex programming.

IEEE Transactions on Information Theory, 61(7):4034–4059, 2015.

Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski.
 Phase retrieval via matrix completion.
 SIAM review, 57(2):225–251, 2015.

Emmanuel J Candès and Benjamin Recht.
 Exact matrix completion via convex optimization.
 Foundations of Computational mathematics, 9(6):717, 2009.

Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters.

1-bit matrix completion.

Information and Inference: A Journal of the IMA, 3(3):189–223, 2014.

Robert M Freund, Paul Grigas, and Rahul Mazumder.

An extended frank-wolfe method with "in-face" directions, and its application to low-rank matrix completion.

SIAM Journal on optimization, 27(1):319–346, 2017.

Dan Garber.

Faster projection-free convex optimization over the spectrahedron. In *Advances in Neural Information Processing Systems*, pages 874–882, 2016.

Dan Garber.

Linear convergence of frank-wolfe for rank-one matrix recovery without strong convexity.

arXiv preprint arXiv:1912.01467, 2019.

Martin Jaggi and Marek Sulovsky.

A simple algorithm for nuclear norm regularized problems. 2010.

- Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.
- Alp Yurtsever, Madeleine Udell, Joel Tropp, and Volkan Cevher. Sketchy decisions: Convex low-rank matrix optimization with optimal storage.

In Artificial Intelligence and Statistics, pages 1188–1196, 2017.