ICML 2020 Presentation

Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search

Binghong Chen¹, Chengtao Li², Hanjun Dai³, Le Song^{1,4}

¹Georgia Institute of Technology, ²Galixir, ³Google Research, Brain Team, ⁴Ant Financial

Too Long; Didn't Watch

Our paper

- proposes the optimal retrosynthetic planning problem and,
- an A*-like algorithm which learns from experience as solution,
- with state-of-the-art performance on a real-world benchmark dataset.

Figure: Counts of the best solutions among all algorithms in terms of length/cost.

Figure: Influence of time on performance.

Background: Retrosynthesis Problem

Task: predict synthesis routes for target molecules.

Challenge: combinatorial search space.

Sub-problems:

- One-step retrosynthesis
- Retrosynthetic planning

Background: One-step Retrosynthesis

 $B(\cdot): \quad t \to \{R_i, \mathcal{S}_i, c(R_i)\}_{i=1}^k$

 S_i : the *i*-th set of predicted reactants. $c(R_i)$: cost of the *i*-th reaction.

Background: Retrosynthetic Planning

Plan a synthesis route from the reaction candidates produced by one-step model *B*.

Motivation: find better routes

- shorter with higher yields,
- more chemically sound,
- more economically efficient,
- more environmentally friendly,
- ... (you name it)

Problem: Optimal Retrosynthetic Planning

Given:

a target molecule *t*, a set of building blocks *M*, a one-step model *B*.

Optimal Planning:

Minimize $c(R_1) + c(R_2) + \dots + c(R_k)$

Where $R_1, R_2, ..., R_k$ is a series of possible reactions predicted with *B* that start with molecules in *M* and ultimately lead to synthesis of *t*.

Note: Practical constraint (efficiency)

• The number of calls to one-step model *B* should be limited.

Retro*: Contributions

- First algorithm to learn from previous planning experience.
- State-of-the-art performance on a real-world benchmark dataset.
- Able to induce a search algorithm that guarantees finding the optimal solution.

Retro*: AND-OR Tree Representation

- Each molecule is encoded as an `OR` node (like m), requiring at least one of its children to be ready.
- Each reaction is encoded as an `AND` node (like P), requiring all children to be ready.
- All building blocks are ready.
- Solution found when the root is ready.

Example:

Reaction **P**: molecule c + molecule $d \rightarrow$ molecule m. Reaction **Q**: molecule $f \rightarrow$ molecule m.

Retro*: Algorithm Framework

Key Idea: Prioritize the synthesis of the molecules in the current *best plan*. **Definition of** $V_t(m|T)$: under the current search tree *T*, the cost of the current best plan containing *m* for synthesizing target *t*.

Retro*: Computing $V_t(m|T)$ via Tree-DP

By decomposing $V_t(m|T)$ into simpler components in a recursive fashion, we can compute its value efficiently via tree-structured dynamic programming.

(1) Boundary case: $V_m \equiv V_m(m|\emptyset)$, the cost of synthesizing frontier node m.

(2) Define reaction number $rn(\cdot | T)$: minimum estimated cost needed for a molecule/reaction to happen in the current tree.

(3) Compute $V_t(m|T)$ with $rn(\cdot |T)$.

$$rn(R|T) = c(R) + \sum_{m \in ch(R)} rn(m|T)$$

$$rn(m|T) = \begin{cases} V_m, & m \in \mathcal{F}(T) \\ \min_{R \in ch(m)} rn(R|T), \text{ otherwise} \end{cases}$$

$$V_t(m|T) = \sum_{r \in \mathcal{A}(m|T) \cap \mathcal{V}^r(T)} c(r)$$

$$+ \sum rn(m'|T)$$

 $m' \in \mathcal{V}^m(T), pr(m') \in \mathcal{A}(m|T)$

10

Retro*: Example for Computing $V_t(m|T)$

We learn $V_m \equiv V_m(m|\emptyset)$, the cost of synthesizing *m*.

 $rn(t|T) = \min(rn(P|T), rn(Q|T))$ $rn(Q|T) = c(Q) + V_d + V_e$

$$V_t(f|T) = c(P) + c(R) + \frac{V_a + V_c + V_f + V_k}{g_t(f|T)}$$
* algorithm! $g_t(f|T)$ $h_t(f|T)$

 A^* Admissibility: guarantee finding an optimal solution if V_m is a lower-bound!

Note: 0 is the lower-bound of V_m for any molecule m if $c(R) = -\log \operatorname{Prob}(R) \ge 0$.

Retro*: Learning to Plan

Retro*: Training Objective

Dataset: $\mathcal{R}_{train} = \{rt_i = (m_i, v_i, R_i, B(m_i))\}$ each tuple contains target molecule m_i , best synthesis cost v_i , expert reaction R_i , and one-step retrosynthesis candidates $B(m_i)$.

OptimizeRegression loss:
$$\mathcal{L}_{reg}(rt_i) = (V_{m_i} - v_i)^2$$
 $\min_{V_{(\cdot)}}$ $\mathbb{E}_{rt_i \sim \mathcal{R}_{train}} \left[\mathcal{L}_{reg}(rt_i) + \mathcal{L}_{reg}(rt_i) + \mathcal{L}_{con}(rt_i, R_j) \right] \right]$ Consistency loss: $\lambda \mathbb{E}_{R_j \sim B(m_i) \setminus \{R_i\}} \left[\mathcal{L}_{con}(rt_i, R_j) \right] \right]$ $\mathcal{L}_{con}(rt_i, R_j) = \max \left\{ 0, v_i + \epsilon - c(R_j) - \sum_{m' \in \mathcal{S}_j} V_{m'} \right\}$

Constraint:

$$c(R_j) + \sum_{m' \in S_j} V_{m'} > v_i + \epsilon$$

Exp: Creating Benchmark Dataset

Exp: Baselines & Evaluation

Baselines:

- **Greedy** greedy Depth First Search: prioritize the reaction with the highest likelihood.
- MCTS Monte-Carlo Tree Search (Segler et al., 2018).
- **DFPN-E** a variant of Proof Number Search (*Kishimoto et al.*, 2019).
- **Retro***-0 obtained by setting V_m to a lower-bound, 0 (ablation study).

Evaluation:

- Time: number of calls to the one-step model ($\approx 0.3s$ per call, occupying > 99% time).
- Solution quality: total costs of reactions / number of reactions (length).

Exp: Results

Figure: Counts of the best solutions among all algorithms in terms of length/cost.

Figure: Influence of time on performance.

Exp: Sample Solution

Retro^{*} solution

Figure: Sample solution route produced by Retro^{*}. Expert route requires 3 more steps to synthesize one molecule in the route.

Future Work

Learning to plan in theorem proving

Same search space

Polymer retrosynthesis

- More patterns and constraints
 - Chain reaction
- No polymerization dataset
 - Transfer knowledge from small molecules

Thanks for listening!

For more details, please refer to our paper/full slides/poster:

Paper

Full Slides

Poster

Background: Reaction Template

Product C

Template: subgraph (i.e., reaction core highlighted in red) rewriting rules

Given a product, how to apply template?

RDKit's **runReactants** will produce list of precursors

One-step Retrosynthesis

- Template-based approach
 - Graph Logic Network
 - Dai, Hanjun, et al. "Retrosynthesis Prediction with Conditional Graph Logic Network." Advances in Neural Information Processing Systems. 2019.
- Template-free approach
 - Seq2seq models
 - Karpov, Pavel, Guillaume Godin, and Igor V. Tetko. "A transformer model for retrosynthesis." *International Conference on Artificial Neural Networks*. Springer, Cham, 2019.

Existing Planners

Monte Carlo Tree Search

Segler, Marwin HS, Mike Preuss, and Mark P. Waller. "Planning chemical syntheses with deep neural networks and symbolic AI." *Nature* 555.7698 (2018): 604-610.

Proof Number Search

Kishimoto, Akihiro, et al. "Depth-First Proof-Number Search with Heuristic Edge Cost and Application to Chemical Synthesis Planning." *Advances in Neural Information Processing Systems*. 2019.

Existing Planner – MCTS

Search Tree Representation

Existing Planner – MCTS

Existing Planner – PNS

- Formulate the retrosynthesis problem as a two-player game.
- Optimize for quickly finding one route.
- Require hand-designed criterion during search.

Search Tree Representation

Existing Planners Summary

Monte Carlo Tree Search

- Rollout time-consuming and comes with high variance.
- Sparsity in variance estimation.
- Not optimized for total costs.

Proof Number Search

- Formulation mismatch.
- Hand-designed criterion during search, hard to tune and generalize.
- Not optimized for total costs.

Algorithm Framework

Algorithm 1: $Retro^*(t)$

1 Initialize
$$T = (\mathcal{V}, \mathcal{E})$$
 with $\mathcal{V} \leftarrow \{t\}, \mathcal{E} \leftarrow \emptyset$;

2 while route not found do

3
$$m_{next} \leftarrow \operatorname{argmax}_{m \in \mathcal{F}(T)} V_t(m);$$

4
$$\{R_i, \mathcal{S}_i, c(R_i)\}_{i=1}^k \leftarrow B(m_{next});$$

5 for
$$i \leftarrow 1$$
 to k do

6 Add
$$R_i$$
 to T under m_{next} ;

7 for
$$j \leftarrow 1$$
 to $|\mathcal{S}_i|$ do

Add
$$\mathcal{S}_{ij}$$
 to T under R_i ;

9 Update
$$V_t(m)$$
 for m in $\mathcal{F}(T)$;

(a) Select the most promising frontier node(b) Expand the node with one-step model

(c) Update current estimate of V function

10 return route;

8

Retro*: Theoretical Guarantees

Theorem 1 Assuming V_m or its lowerbound is known for all encountered molecules m, Algorithm 1 is guaranteed to return an optimal solution, if the halting condition is changed to "the total costs of a found route is no larger than $\operatorname{argmin}_{m \in \mathcal{F}(T)} V_t(m)$ ".

Proof

Similar to A^* admissibility proof.

Remark

0 is the lower-bound of V_m for any molecule m if cost is defined as the negative log-likelihood.

Retro*: Representing Value Function Vm

One-step Model Training

$$B(\cdot): \quad t \to \{R_i, \mathcal{S}_i, c(R_i)\}_{i=1}^k$$

- Template-based MLP model.
- There are ~380K distinct templates.
- Multi-class classification.
- Predicts top-50 reaction templates for each target.
- Apply templates to obtain the corresponding reactants.
- Trained on training reaction set.
- Cost defined as the negative log-likelihood of the predicted reaction.
- Minimize cost = maximize likelihood.

Exp: Results (2)

Algorithm	Retro*	Retro*-0	DFPN-E	MCTS	Greedy DFS
Success rate	86.84%	79.47%	55.26%	33.68%	22.63%
Time	156.58	208.58	279.67	380.02	388.15
Shorter routes	50	52	59	30	11
Better routes	112	102	25	18	26

Performance Table: The number of shorter and better routes are obtained from the comparison against the expert routes, in terms of length and total costs.