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Motivation: Why should we care about fair systems?

Figure: Network with a fat-tree topology from Ruffy et al. (2019).

Fairness consideration to users is crucial

Existing approaches to tackle this issue includes:

Utilitarian approach

Egalitarian approach
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Fairness

Fairness includes:

Efficiency

Impartiality

Equity

Fairness encoded in a Social Welfare Function (SWF)

We focus on generalized Gini social welfare function (GGF)
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Problem Statement

GGF can be defined as:

GGFw (v) =
D∑
i=1

w iv
↑
i

= [w1

>

w2

>

. . .

>

wD ]



v↑1

≤

v↑2

≤

. . .

≤

v↑D


Fair optimization problem in RL:

arg max
π

GGFw (J(π)) (1)

where J(π) = EPπ

[
∞∑
t=1

γt−1R t

]
or J(π) = lim

h→∞

1

h
EPπ

[
h∑

t=1

R t

]
.

γ-discounted rewards average rewards
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Theoretical Discussion

Assumption: MDPs are weakly-communicating

Sufficiency of Stationary Markov Policies

Existence of stationary Markov fair optimal policy.

Possibly State-Dependent Optimality

With average reward, fair optimality stays state-independent.

Contribution on Approximation Error

Approximate average-optimal policy (π∗1) with γ-optimal policy (π∗γ).

Theorem:

GGFw (µ(π∗
γ)) ≥ GGFw (µ(π∗

1 ))− R(1− γ)
(
ρ(γ, σ(HPπ∗

1
)) + ρ(γ, σ(HPπ∗

γ
))
)

where R = maxπ ‖Rπ‖1 and ρ(γ, σ) = σ
γ−(1−γ)σ .
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Value Based and Policy Gradient Algorithms

DQN: Q network takes values in R|A|×D , instead of R|A|, trained with
target:

Q̂θ(s, a) = r + γQ̂θ′(s
′, a∗),

where a∗ = argmaxa′∈A GGFw
(
r + γQ̂θ′(s

′, a′)
)
.

To optimize the GGF with policy gradient:

∇θGGFw (J(πθ)) =∇J(πθ)GGFw (J(πθ)) · ∇θJ(πθ)

=wᵀ
σ · ∇θJ(πθ).
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Experimental Results

What is the impact of optimizing GGF instead of the average of the
objectives?
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Experimental Results

What is the price of fairness?
How those algorithms performs in continuous domains?
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Experimental Results (Traffic Light Control)

What is the effect of γ with respect to GGF-average optimality?
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Conclusion

Fair optimization in RL setting

Theoretical discussion with a new bound

Adaptations of DQN, A2C and PPO to solve this problem.

Experimental validation in 3 domains

Future Works:

Extend to distributed control

Consider other fair social welfare functions

Directly solve average reward problems
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