On conditional versus marginal bias in multi-armed bandits

Jaehyeok Shin ${ }^{1}$, Aaditya Ramdas ${ }^{1,2}$ and Alessandro Rinaldo ${ }^{1}$
Dept. of Statistics and Data Science ${ }^{1}$,
Machine Learning Dept. ${ }^{2}$, CMU

Stochastic Multi-armed bandits (MABs)

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

$t=1$

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

$t=1$

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

$t=1$
Y_{1}
$t=2$

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

Y_{1}
$t=1$

. .留
$t=2$

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

Y_{1}
$t=1$
$t=2$
Y_{2}

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

Y_{1}
$t=1$

$t=2$
Y_{2}

Adaptive sampling scheme to maximize rewards / to identify the best arm

Time

$t=1$
$t=2$
Y_{2}

Y_{1}

Collected data can be used to identify an interesting arm...

Collected data can be used to identify an interesting arm...

...and the data can be used to conduct statistical inferences.

 Time

$$
Y_{1}
$$

$t=2$

$$
t=2
$$

Y_{2}
$t=1$

- - -

$$
Y_{2}
$$

Q. Sign of the bias of sample mean?

$$
\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathscr{T})-\mu_{\kappa}\right] \leq \mathbf{o r} \geq 0 ?
$$

Xu et al. [2013] :
An informal argument why the sample mean is
negatively biased for "optimistic" algorithms.
Villar et al. [2015] :
Demonstrate this negative bias in a simulation study motivated by using MAB for clinical trials.

Q. Sign of the bias of sample mean?

$$
\mathbb{E}\left[\widehat{\mu}_{\kappa}(\mathscr{T})-\mu_{\kappa}\right] \leq \mathbf{o r} \geq 0 ?
$$

Xu et al. [2013] :
An informal argument why the sample mean is
negatively biased for "optimistic" algorithms.
Villar et al. [2015] :
Demonstrate this negative bias in a simulation study motivated by using MAB for clinical trials.

Nie et al. [2018]
Sample mean is negatively biased

$$
\mathbb{E}\left[\widehat{\mu}_{k}(t)-\mu_{k}\right] \leq 0
$$

Fixed Arm
Fixed Time
for MABs designed to maximize cumulative reward.
Shin et al. [2019]
Introduced "monotonicity property" characterizing the bias of the sample mean for more general classes of MABs.

$$
\mathbb{E}\left[\hat{\mu}_{\kappa}(\mathscr{T})-\mu_{\kappa}\right]
$$

Chosen Arm Stopping Time

Nie et al. [2018]

Sample mean is negatively biased

$$
\mathbb{E}\left[\hat{\mu}_{k}(t)-\mu_{k}\right] \leq 0
$$

Fixed Arm Fixed Time
for MABs designed to maximize cumulative reward.
Shin et al. [2019]
Introduced "monotonicity property" characterizing the bias of the sample mean for more general classes of MABs.

$$
\mathbb{E}\left[\hat{\mu}_{\kappa}(\mathscr{T})-\mu_{\kappa}\right]
$$

Chosen Arm
Stopping Time

However, current understanding of bias is limited in two aspects.

1. Existing results concern the bias of the sample mean only.

However, current understanding of bias is limited in two aspects.

1. Existing results concern the bias of the sample mean only.

We study the bias of monotone functions of the rewards.

However, current understanding of bias is limited in two aspects.

1. Existing results concern the bias of the sample mean only.

We study the bias of monotone functions of the rewards.
2. Existing guarantees cover only the marginal bias.

However, current understanding of bias is limited in two aspects.

1. Existing results concern the bias of the sample mean only.

We study the bias of monotone functions of the rewards.
2. Existing guarantees cover only the marginal bias.

We extend previous results to cover the conditional bias.

Marginal vs Conditional bias

- K prototype items

Want to screen out some items by testing

$$
H_{0 k}: \mu_{k} \geq c \quad \text { vs } H_{1 k}: \mu_{k}<c \text { for } k=1, \ldots, K
$$

Marginal vs Conditional bias

$H_{0}: \mu \geq c$ vs $H_{1}: \mu<c$

"Screen out the item at \mathscr{T} "
(Reject the null)

(Fail to reject the null)

Marginally, the sample mean is negatively biased.

$$
\mathbb{E}\left[\widehat{\mu}_{k}-\mu_{k}\right] \leq 0, \quad k=1, \ldots, K
$$

"Underestimating the true mean revenue."
(e.g. Starr \& Woodroofe [1968], Shin et al. [2019])

...however, we usually do not evaluate the sample mean every time.

...however, we usually do not evaluate the sample mean every time.

Conditioned on the "active" event, the sample mean is positively biased.

$\mathbb{E}\left[\widehat{\mu}_{k}-\mu_{k} \mid\right.$ item k is active $] \geq 0, k=1, \ldots, K$
"Overestimating the true mean revenue."

Conditional bias of the empirical cumulative distribution function (CDF)

For a fixed $y \in \mathbb{R}$,

$$
\mathbb{E}\left[\widehat{F}_{k, \mathscr{T}}(y)-F_{k}(y) \mid C\right] \leq \text { or } \geq 0 ?
$$

e.g., $C=\{$ Reject the null $\},\{$ Chosen as the best arm $\} \ldots$
where
$\widehat{F}_{k, \mathscr{T}}:$ Empirical CDF of arm k at time \mathscr{T}
F_{k} : True CDF of arm k at time \mathscr{T}

Tabular model of MABs

"Hypothetical table"

Tabular model of MABs

Time

Tabular model of MABs

Time

$$
t=1
$$

$$
X_{1,1}^{*}
$$

$$
X_{1,2}^{*}
$$

$$
X_{2,1}^{*}
$$

$$
X_{2,2}^{*}
$$

$$
X_{2, K}^{*}
$$

Tabular model of MABs

$$
\begin{aligned}
& \text { Time } \\
& t=1 \\
& X_{1,1}^{*} \\
& Y_{1} \\
& X_{1, K}^{*} \\
& X_{2,1}^{*} \\
& X_{2,2}^{*} \\
& \cdots X_{2, K}^{*}
\end{aligned}
$$

Tabular model of MABs

$$
\begin{aligned}
& \text { Time } \\
& t=1 \\
& Y_{1} \\
& t=2 \\
& X_{2,2}^{*}
\end{aligned}
$$

Tabular model of MABs

Time

$t=1$
$X_{1,1}^{*}$

$$
Y_{1}
$$

$$
X_{1, K}^{*}
$$

$t=2$

$$
X_{2,1}^{*}
$$

$$
X_{2,2}^{*}
$$

$$
X_{2, K}^{*}
$$

Tabular model of MABs

Time

$t=1$
$X_{1,1}^{*}$

$$
Y_{1}
$$

$$
X_{1, K}^{*}
$$

$t=2$

$$
Y_{2}
$$

$$
X_{2,2}^{*}
$$

$$
X_{2, K}^{*}
$$

Hypothetical dataset

Hypothetical table

Random seeds

Hypothetical dataset

Given $\mathscr{D}_{\infty}^{*}=X_{\infty}^{*} \cup\left\{W_{t}\right\}_{t=1}^{\infty}$
C, \mathscr{T} and $N_{k}(t)$ for each t and k can be expressed as some functions of \mathscr{D}_{∞}^{*}.

Monotone effect of a sample

Theorem

Suppose arm k has a finite mean. If $\frac{1(C)}{N_{k}(\mathscr{T})}$ is an increasing
function of each $X_{i, k}^{*}$ while keeping all other entries in \mathscr{D}_{∞}^{*}
fixed then we have

$$
\mathbb{E}\left[\widehat{F}_{k, \mathscr{T}}(y)-F_{k}(y) \mid C\right] \leq 0
$$

(Negative conditional bias of the empirical CDF)

Monotone effect of a sample

Theorem

Suppose arm k has a finite mean. If $\frac{1(C)}{N_{k}(\mathscr{T})}$ is an increasing function of each $X_{i, k}^{*}$ while keeping all other entries in \mathscr{D}_{∞}^{*} fixed then we have

$$
\begin{array}{ll}
\mathbb{E}\left[\widehat{F}_{k, \mathscr{F}}(y)-F_{k}(y) \mid C\right] \leq 0 & \begin{array}{l}
\text { (Negative conditional bias of } \\
\text { the empirical CDF) }
\end{array} \\
\mathbb{E}\left[\widehat{k}_{k}(\mathscr{T})-\mu_{k} \mid C\right] \geq 0 & \begin{array}{l}
\text { (Positive conditional bias of } \\
\text { the sample mean) }
\end{array}
\end{array}
$$

Monotone effect of a sample

Theorem

Suppose arm k has a finite mean. If $\frac{1(C)}{N_{k}(\mathscr{T})}$ is a decreasing
function of each $X_{i, k}^{*}$ while keeping all other entries in \mathscr{D}_{∞}^{*}
fixed then we have

$$
\mathbb{E}\left[\widehat{F}_{k, \mathscr{T}}(y)-F_{k}(y) \mid C\right] \geq 0 \quad \begin{array}{ll}
\text { (Positive conditional bias of } \\
\text { the empirical CDF) }
\end{array}
$$

Monotone effect of a sample

Theorem

Suppose arm k has a finite mean. If $\frac{1(C)}{N_{k}(\mathscr{T})}$ is a decreasing function of each $X_{i, k}^{*}$ while keeping all other entries in \mathscr{D}_{∞}^{*} fixed then we have

$$
\begin{array}{ll}
\mathbb{E}\left[\widehat{F}_{k, \mathscr{T}}(y)-F_{k}(y) \mid C\right] \geq 0 & \begin{array}{l}
\text { (Positive conditional bias of } \\
\text { the empirical CDF) }
\end{array} \\
\mathbb{E}\left[\widehat{\mu}_{k}(\mathscr{T})-\mu_{k} \mid C\right] \leq 0 & \begin{array}{l}
\text { (Negative conditional bias } \\
\text { of the sample mean) }
\end{array}
\end{array}
$$

E.g.: Best arm identification

- K prototype items

Want to figure out which one has the largest revenue.

E.g.: Best arm identification

lil' UCB algorithm

Time

$t=1$
Y_{1}
$t=2$
Y_{2}

E.g.: Best arm identification

lil' UCB algorithm

$$
\begin{array}{lll}
\text { Time } & \cdots & Y_{1} \\
t=1 & \mu_{2} & \\
t=2 & Y_{2} &
\end{array}
$$

$$
A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right) \quad \text { (Upper confidence bound) }
$$

E.g.: Best arm identification

lil' UCB algorithm

Time

$$
\begin{array}{lll}
t=1 & & Y_{1} \\
t=2 & Y_{2} &
\end{array}
$$

$$
A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right) \quad \text { (Upper confidence bound) }
$$

$$
\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}
$$

E.g.: Best arm identification

lil' UCB algorithm

Time

$$
\begin{array}{ll}
t=1 & \\
t=2 & Y_{2}
\end{array}
$$

$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right) \quad$ (Upper confidence bound)
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

E.g.: Best arm identification

lil' UCB algorithm

a) Item 1 is chosen as the best.
b) Item 1 is NOT chosen as the best.

E.g.: Best arm identification

a) Item 1 is chosen as the best $(\kappa=1)$.

$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

E.g.: Best arm identification

a) Item 1 is chosen as the best $(\kappa=1)$.

Time	
$t=1$	Y_{1}
$t=2$	Y_{2}

$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\underset{\text { from item } 1}{\text { Sample }} \stackrel{\text { Increasing }}{\longmapsto} \frac{1(\kappa=1)}{N_{1}(\mathscr{T})}$

E.g.: Best arm identification

a) Item 1 is chosen as the best $(\kappa=1)$.

Time	$\underline{\mu_{1}}$	管源	
$t=1$		Y_{1}	
$t=2$	Y_{2}		

$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

E.g.: Best arm identification

b) Item 1 is NOT chosen as the best $(\kappa \neq 1)$.

Time

$\underset{\text { from item } 1}{\text { Sample }} \stackrel{\text { Decreasing }}{\longmapsto} \frac{1(\kappa \neq 1)}{N_{1}(\mathscr{T})}$
$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

E.g.: Best arm identification

b) Item 1 is NOT chosen as the best $(\kappa \neq 1)$.

Time	
$t=1$	Y_{1}
$t=2$	Y_{2}

Sample
from item $1 \longmapsto$$\frac{1(\kappa \neq 1)}{N_{1}(\mathscr{T})}$
$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

Positive conditional bias of the empirical CDF

E.g.: Best arm identification

b) Item 1 is NOT chosen as the best $(\kappa \neq 1)$.

Time		
$t=1$		Y_{1}
$t=2$	Y_{2}	

$A_{t}=\arg \max _{k} \widehat{\mu}_{k}(t)+u\left(N_{k}(t)\right)$
$\mathscr{T}=\inf \left\{t: \exists k, N_{k}(t) \geq 1+\lambda \sum_{j \neq k} N_{j}(t)\right\}$
$\kappa=\arg \max _{k} N_{k}(\mathscr{T})$

Average of the empirical CDF of item 1 conditioned on each event

lii'UCB on 3 items ($\mu_{1}=1$)
Mean bias $=(0.2,-0.93,-1.14)$

Thank you!

On conditional versus marginal bias in multi-armed bandits

Jaehyeok Shin, Aaditya Ramdas and Alessandro Rinaldo

Carnegie
Mellon
University

