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Training neural networks using 
gradient descent

• Have labeled training data  

• Want to train a neural network  

• Define loss  

• Minimize loss using gradient descent: 

(x, y)

fθ(x)

L(θ) = 𝔼 [( fθ(x) − y)2]

θ ← θ − η∇L(θ)



The realizable, Gaussian setting

•  , where  is an unknown 1-
hidden-layer NN 

• With ReLU or sigmoid activations 

•  is distributed according to Gaussian 

y = g(x) g

x
N(0, I)



Our main result: 
even in this simple setting, GD could fail to 
converge in a polynomial number of steps



•We model gradient descent as a statistical query (SQ) algorithm 

•We construct a hard class of 1-layer neural nets 

•We show, unconditionally, that no SQ algorithm can learn this hard class 
in a polynomial number of queries

Our approach



The statistical query model
• Have a distribution  on , i.e. on labeled pairs  

• Don’t see individual points , instead make “statistical queries” to an oracle

D ℝn × ℝ (x, y)

(x, y)

φ : ℝn × ℝ → ℝ

𝔼[φ(x, y)] ± τ

τ ∈ [0,1]



Statistical query learning

• Unknown function  in a known class 

• Let  denote the distribution of  
for  

• You have SQ oracle access to  

• Want to output  that is -close to 

g

Dg (x, g(x))
x ∼ N(0, I)

Dg

f ϵ g



Gradient descent as an SQ algorithm

•Say our current model is , with parameters  

•Consider population squared loss:  

• Its gradient is  

•Each coordinate turns out to be a statistical query 

• In fact, each query is (essentially) correlational, i.e. of the form 

fθ(x) θ

L(θ) = 𝔼 [( fθ(x) − y)2]
∇L(θ) = 𝔼 [∇θ( fθ(x) − y)2]

φ(x, y) = h(x)y



How does one prove SQ lower bounds?

• The SQ dimension of a function class measures its SQ complexity 

• Similar in spirit to VC dimension 

• Can roughly think of as the number of uncorrelated functions in the 
class 

• Here the correlation of two functions  is  

• Well-studied

f, g 𝔼[ f(x)g(x)]



Construction of the hard class

gS(x) = ∑
w∈{−1,1}log k

χ(w) ϕ(w ⋅ xS)

: set of  indicesS log k χ(w) = w1w2⋯wlog k

Activation function ϕ : ℝ → ℝ

: coordinates of  in xS x S

Input: x ∈ ℝn

Input dimension , number of hidden units n k

 unitsk



A visualization

In 3 dimensions, with ϕ = tanh



These functions are uncorrelated

• For any two index sets  and ,  and  are completely uncorrelated, 
i.e.  

• This holds under any spherically symmetric distribution!

S T gS gT
𝔼 [gS(x)gT(x)] = 0



SQ dimension of our construction

• Number of hidden units:  

• Obtain  uncorrelated functions, one for each index 

set  

• SQ dimension is roughly 

2log k = k

( n
log k) ≈ nΘ(log k)

S

nΘ(log k)



The formal lower bound

• To learn this hard class up to error , even using tolerance 
, any SQ algorithm requires at least  correlational 

queries. 

• In particular, gradient descent with respect to squared loss requires at 
least  steps. 

• Technical subtlety: functions must be noticeably far from zero. 

• We show this using tools from Hermite analysis

ϵ < 1/poly(k)
τ = n−Θ(log k) nΘ(log k)

nΘ(log k)
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Extension to probabilistic concepts

• Boolean labels obtained by interpreting output as a probability 

• For input , say we see label  with probability  and  
otherwise 

• Our lower bound extends to this setting as well 

• In fact for general (not just correlational) queries

x y = 0 σ(gS(x)) y = 1



Experiments

• Trained an overparameterized NN 
on data from our hard class using 
GD on squared loss 

• Random initialization 

• Input dimension:  

• Labels: sum of  tanh units

n = 14

k = 512



Summary

• We show new superpolynomial SQ lower bounds on learning simple 1-
layer neural networks 

• Works under the Gaussian distribution, and with standard activations 

• Extends to probabilistic Boolean labels



Thanks!


