## Superpolynomial lower bounds on learning 1-layer neural nets with gradient descent **ICML 2020**

Joint work with Surbhi Goel, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans

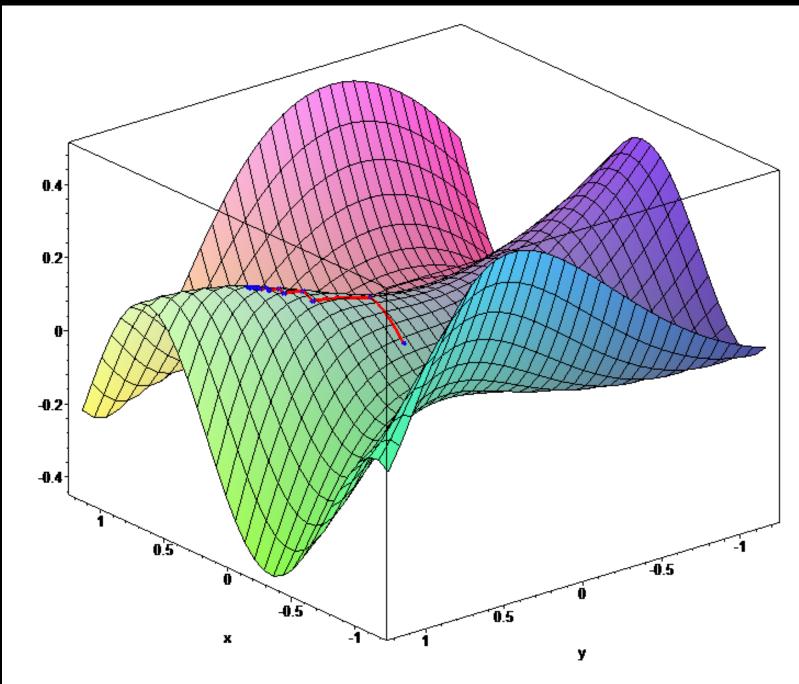
Aravind Gollakota, June 2020

**University of Texas at Austin** 



#### Training neural networks using gradient descent

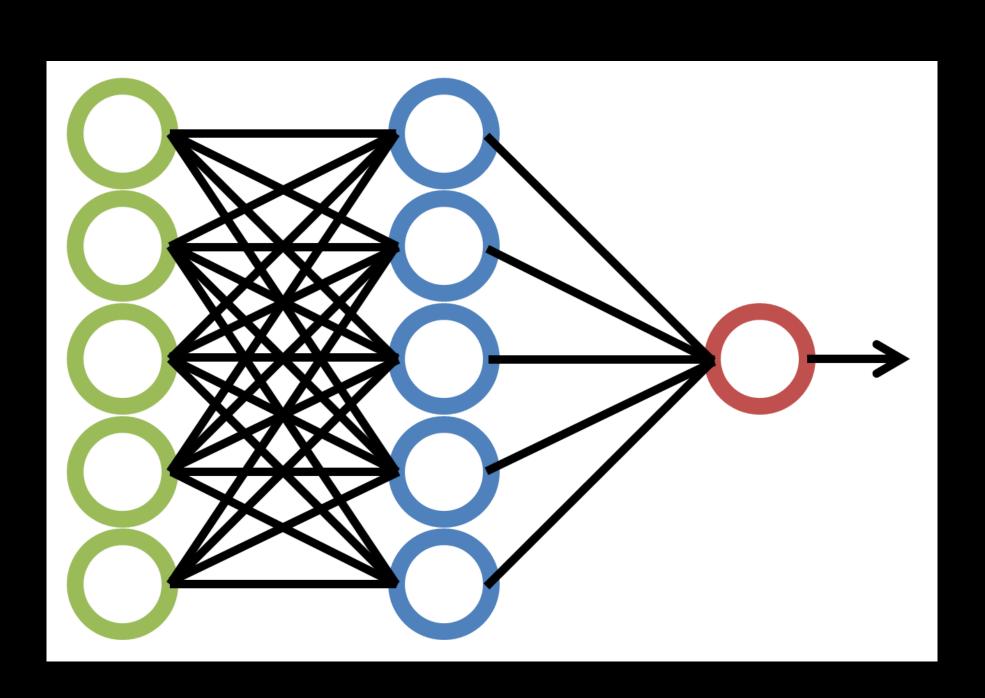
- Have labeled training data (x, y)
- Want to train a neural network  $f_{\theta}(x)$
- Define loss  $L(\theta) = \mathbb{E} \left[ (f_{\theta}(x) y)^2 \right]$
- Minimize loss using gradient descent:  $\theta \leftarrow \theta - \eta \nabla L(\theta)$





#### The realizable, Gaussian setting

- y = g(x), where g is an unknown 1hidden-layer NN
  - With ReLU or sigmoid activations
- x is distributed according to Gaussian N(0, I)



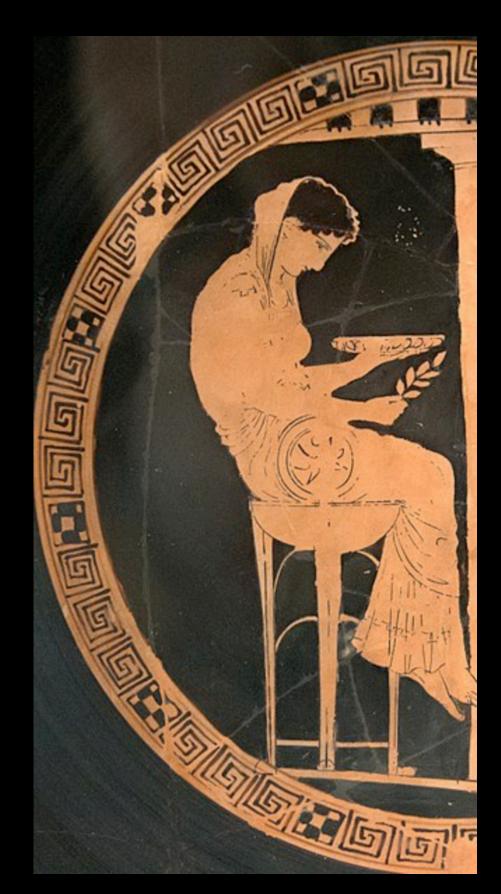
Our main result: even in this simple setting, GD could fail to converge in a polynomial number of steps

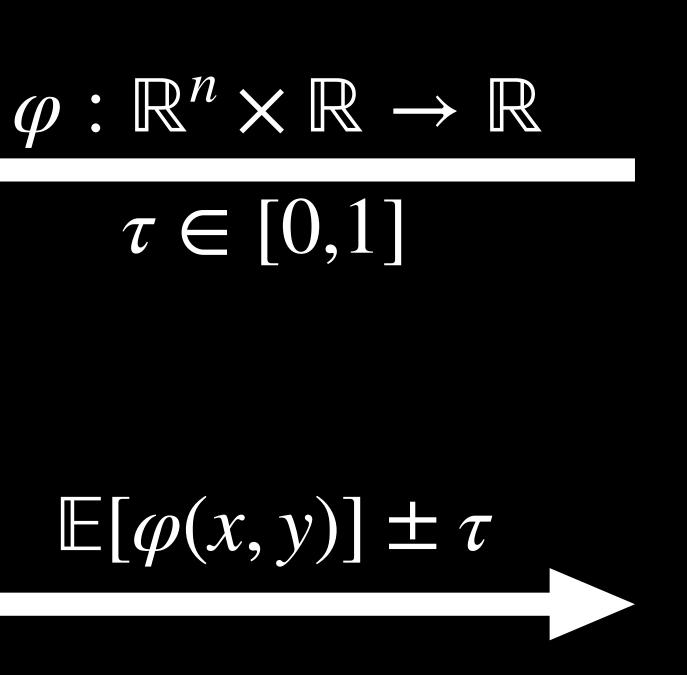
### Our approach

- We model gradient descent as a *statistical query (SQ)* algorithm
- We construct a hard class of 1-layer neural nets
- We show, unconditionally, that no SQ algorithm can learn this hard class in a polynomial number of queries

#### The statistical query model

- Have a distribution D on  $\mathbb{R}^n \times \mathbb{R}$ , i.e. on labeled pairs (x, y)
- Don't see individual points (x, y), instead make "statistical queries" to an oracle

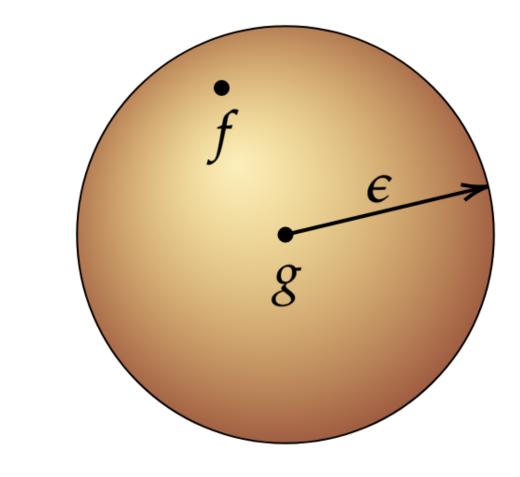






# Statistical query learning

- Unknown function g in a known class
- Let  $D_g$  denote the distribution of (x, g(x))for  $x \sim N(0, I)$
- You have SQ oracle access to  $D_g$
- Want to output f that is  $\epsilon$ -close to g





#### Gradient descent as an SQ algorithm

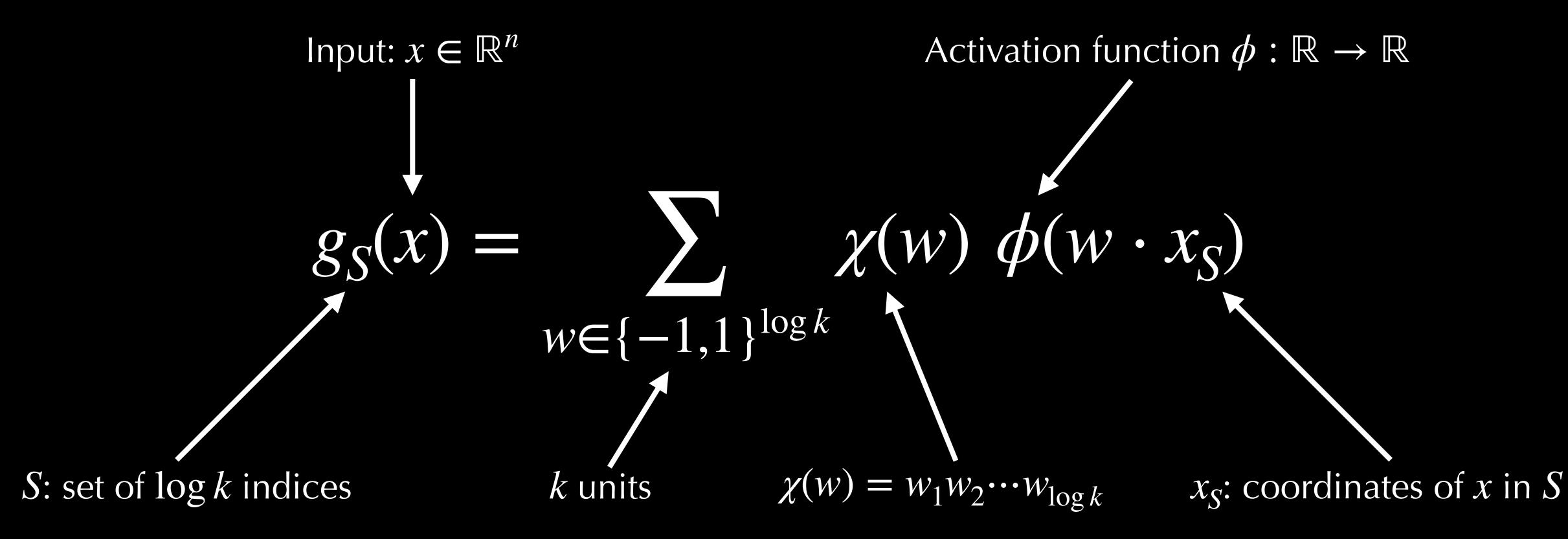
- Say our current model is  $f_{\theta}(x)$ , with parameters  $\theta$
- Consider population squared loss:  $L(\theta) = \mathbb{E}\left[(f_{\theta}(x) y)^2\right]$
- Its gradient is  $\nabla L(\theta) = \mathbb{E} \left[ \nabla_{\theta} (f_{\theta}(x) y)^2 \right]$
- Each coordinate turns out to be a statistical query
- In fact, each query is (essentially) *correlational*, i.e. of the form  $\varphi(x, y) = h(x)y$

### How does one prove SQ lower bounds?

- The SQ dimension of a function class measures its SQ complexity
  - Similar in spirit to VC dimension
- Can roughly think of as the number of uncorrelated functions in the class
  - Here the correlation of two functions f, g is  $\mathbb{E}[f(x)g(x)]$
- Well-studied

#### **Construction of the hard class**

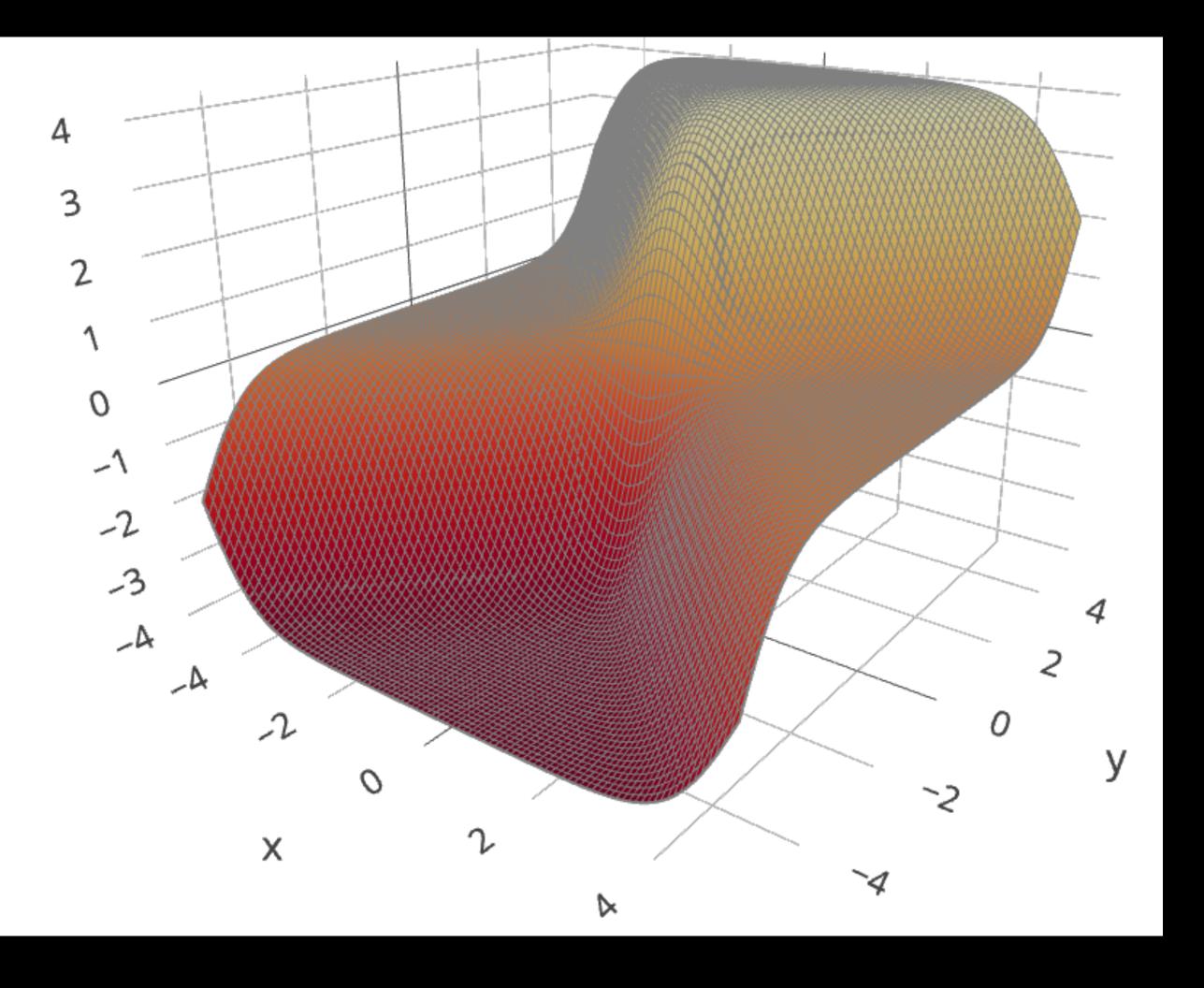
Input dimension *n*, number of hidden units k





#### Avisualization

#### In 3 dimensions, with $\phi = \tanh$



#### These functions are uncorrelated

- i.e.  $\mathbb{E} |g_S(x)g_T(x)| = 0$ 
  - This holds under any spherically symmetric distribution!

#### • For any two index sets S and T, $g_S$ and $g_T$ are completely uncorrelated,

#### SQ dimension of our construction

- Number of hidden units:  $2^{\log k} = k$ • Obtain  $\binom{n}{\log k} \approx n^{\Theta(\log k)}$  uncorrelated functions, one for each index set S
- SQ dimension is roughly  $n^{\Theta(\log k)}$

#### The formal lower bound

- To learn this hard class up to error  $\epsilon < 1/\text{poly}(k)$ , even using tolerance  $\tau = n^{-\Theta(\log k)}$ , any SQ algorithm requires at least  $n^{\Theta(\log k)}$  correlational queries.
- In particular, gradient descent with respect to squared loss requires at least  $n^{\Theta(\log k)}$  steps.
- Technical subtlety: functions must be noticeably far from zero.
  - We show this using tools from Hermite analysis

#### Related work

- Santosh Vempala and John Wilmes, COLT 2019
- Ohad Shamir, JMLR 2018, COLT 2019
- Concurrent: Ilias Diakonikolas, Daniel Kane, Vasilis Kontonis, and Nikos Zarifis, COLT 2020

Le Song, Santosh Vempala, John Wilmes, and Bo Xie, NeurIPS 2017

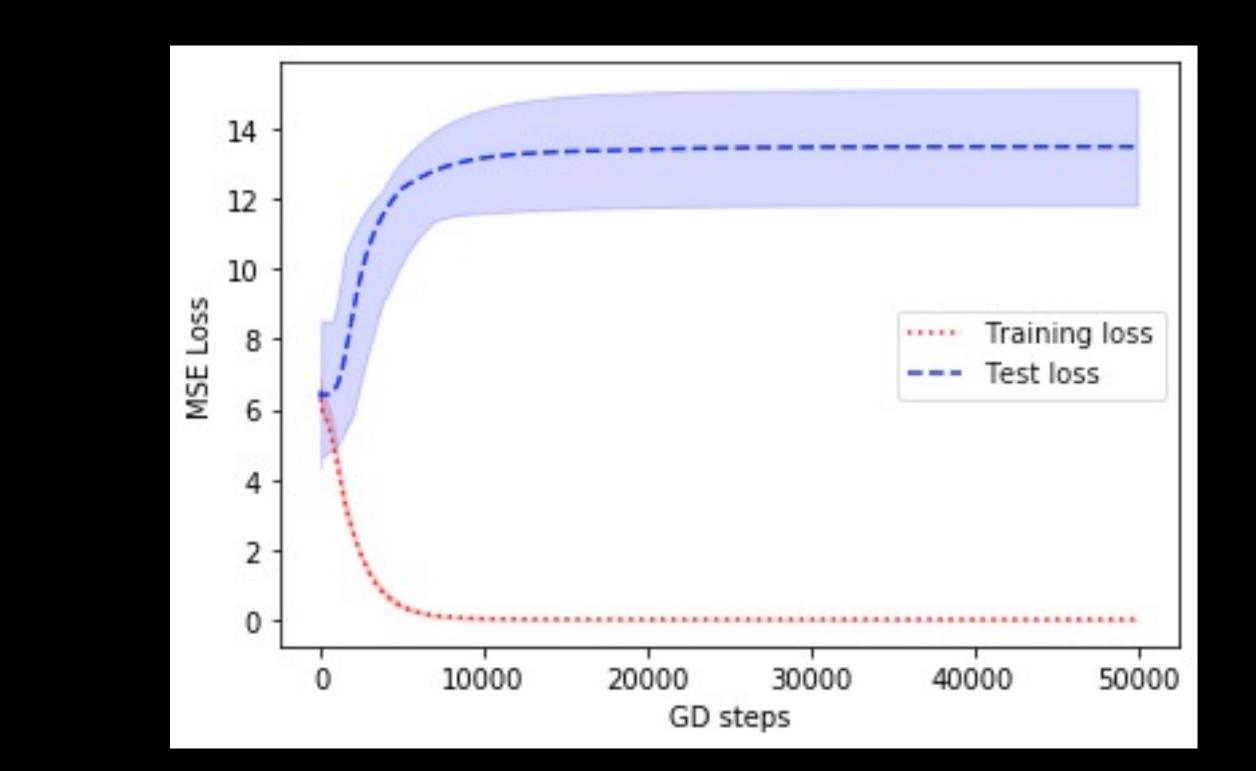
Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah, ICML 2017

#### Extension to probabilistic concepts

- Boolean labels obtained by interpreting output as a probability
- For input *x*, say we see label y = 0 with probability  $\sigma(g_S(x))$  and y = 1 otherwise
- Our lower bound extends to this setting as well
  - In fact for general (not just correlational) queries

#### Experiments

- Trained an overparameterized NN on data from our hard class using GD on squared loss
- Random initialization
- Input dimension: n = 14
- Labels: sum of k = 512 tanh units



### Summary

- layer neural networks
- Extends to probabilistic Boolean labels

# • We show new superpolynomial SQ lower bounds on learning simple 1-

# Works under the Gaussian distribution, and with standard activations

#### Thanks!