Convolutional dictionary learning based auto-encoders for natural exponential-family distributions

Bahareh Tolooshams^{*1}, Andrew H. Song^{*2}, Simona Temereanca³, and Demba Ba¹

 $^{1}{\rm Harvard\ University} \quad ^{2}{\rm Massachusetts\ Institute\ of\ Technology} \quad ^{3}{\rm Brown\ University}$

*Equal contributions

CRISP Group: https://crisp.seas.harvard.edu

ICML 2020

3 Deep Convolutional Exponential Auto-encoder (DCEA)

4 Experiments

5 Conclusion

Motivation

- Not interpretable X
- Memory and computationally expensive X

Signal Processing (SP)

- Generative models
- e.g., sparse coding model

 $p(\mathbf{y} \mid \mathbf{x}) = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}, \quad \mathbf{x} \quad \text{is sparse}$

- Slow and not scalable X
- Interpretable
- Memory efficient

- Benefit from scalability of deep learning for traditional SP tasks.
- Guide to design interpretable and memory efficient networks.

3 Deep Convolutional Exponential Auto-encoder (DCEA)

4 Experiments

5 Conclusion

Convolutional Dictionary Learning (CDL)

Generative model for each data j

$$\mathbf{y}^{j} = \sum_{c=1}^{C} \mathbf{h}_{c} * \mathbf{x}_{c}^{j} + \boldsymbol{\epsilon}^{j} = \mathbf{H}\mathbf{x}^{j} + \boldsymbol{\epsilon}^{j}, \quad \boldsymbol{\epsilon}^{j} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

where \mathbf{x}_{c}^{j} is sparse.

Goal: Learn **H** that maps sparse representation \mathbf{x}^{j} to data \mathbf{y}^{j} .

$$\min_{\{\mathbf{h}_c\}_{c=1}^C, \{\mathbf{x}^j\}_{j=1}^J} \frac{1}{2} \sum_{j=1}^J \|\mathbf{y}^j - \mathbf{H}\mathbf{x}^j\|_2^2 + \lambda \|\mathbf{x}^j\|_1$$

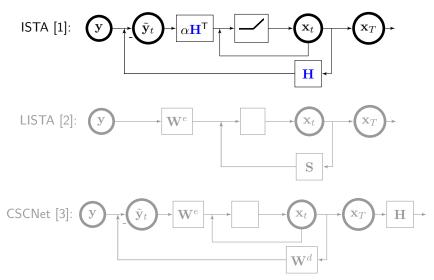
• min w.r.t. $\mathbf{x}^{j} \rightarrow Convolutional Sparse Coding (CSC)$.

• min w.r.t. H and $\mathbf{x}^j
ightarrow$ Convolutional Dictionary Learning (CDL).

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 5 / 22

Unfolding Networks

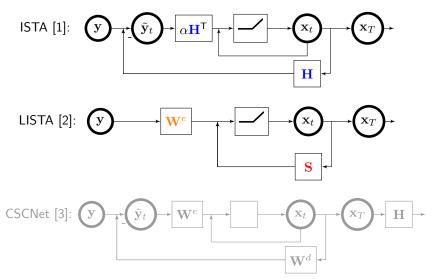
Solve CSC and CDL by iterative proximal gradient algorithm.



Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 6 / 22

Unfolding Networks

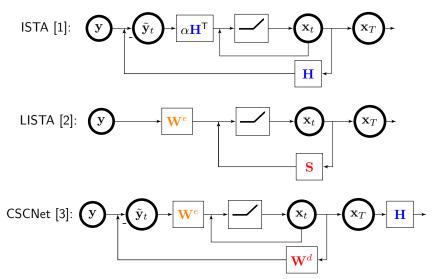
Solve CSC and CDL by iterative proximal gradient algorithm.



Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 6 / 22

Unfolding Networks

Solve CSC and CDL by iterative proximal gradient algorithm.



What if the observations are no longer Gaussian?

Count-valued data

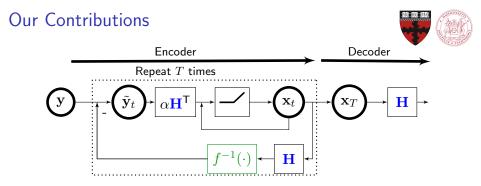
Fingerprint

Photon-based imaging

Classical CDL approach: Alternating minimization with a Poisson generative model [4, 5].

- Unsupervised \checkmark
- Follows a generative model \Rightarrow interpretable \checkmark
- Not scalable (can take minutes \sim hours to denoise single image) X

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 7 / 22



- Auto-encoder inspired by CDL, termed Deep Convolutional Exponential Auto-encoder (DCEA), for non real-valued data
- Demonstration of the flexibility of DCEA for both
 - unsupervised task, e.g., CDL
 - supervised task, e.g., Poisson denoising problem
- Gradient dynamics of shallow exponential auto-encoder (SEA)
 - Prove that SEA recovers parameters of the generative model.

Harvard CRISP

3 Deep Convolutional Exponential Auto-encoder (DCEA)

4 Experiments

5 Conclusion

Deep Convolutional Exponential Auto-encoder Problem description

Natural exponential family with convolutional generative model:

$$\log p(\mathbf{y}|\boldsymbol{\mu}) = f(\boldsymbol{\mu})^{\mathsf{T}} \mathbf{y} + g(\mathbf{y}) - B(\boldsymbol{\mu}), \text{ where } f(\boldsymbol{\mu}) = \mathbf{H}\mathbf{x}, \text{ } \mathbf{x} \text{ is sparse.}$$

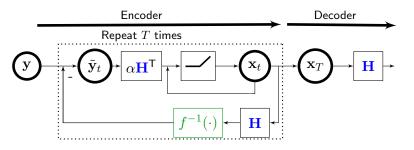
	У	B(z)	Inverse link: $f^{-1}(\cdot)$
Gaussian	\mathbb{R}	$\mathbf{z}^{T}\mathbf{z}$	$I(\cdot)$
Binomial	[0M]	$-1^{T}\log(1-\mathbf{z})$	$sigmoid(\cdot)$
Poisson	$ [0\infty)$	$1^{T}\mathbf{z}$	$\exp(\cdot)$

Exponential Convolutional Dictionary Learning (ECDL):

$$\min_{\mathbf{H},\mathbf{x}} \underbrace{-\log p(\mathbf{y}|\boldsymbol{\mu})}_{\mathbf{H},\mathbf{x}} + \underbrace{\lambda \|\mathbf{x}\|_1}_{\lambda \|\mathbf{x}\|_1}$$

Deep Convolutional Exponential Auto-encoder

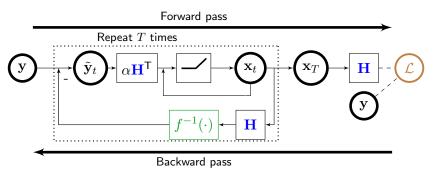
Network architecture



Components for different distributions

	у	$f^{-1}(\cdot)$	Encoder Unfolding (\mathbf{x}_t)	Decoder $(f(\hat{\mu}))$
Gaussian	R	$I(\cdot)$	$\mathcal{S}_b\left(\mathbf{x}_{t-1} + \alpha \mathbf{H}^T \widetilde{\mathbf{y}}_t\right)$	$\mathbf{H}\mathbf{x}_T$
Binomial	[0M]	$sigmoid(\cdot)$	$\mathcal{S}_b\left(\mathbf{x}_{t-1} + \alpha \mathbf{H}^T(\frac{1}{M}\widetilde{\mathbf{y}}_t)\right)$	$\mathbf{H}\mathbf{x}_{T}$
Poisson	$ [0\infty)$	$\exp(\cdot)$	$\mathcal{S}_b\left(\mathbf{x}_{t-1} + \alpha \mathbf{H}^{T}\left(Elu(\widetilde{\mathbf{y}}_t)\right)\right)$	$\mathbf{H}\mathbf{x}_{T}$

Deep Convolutional Exponential Auto-encoder Training & inference



Training

- Forward pass: Estimate code x_T & compute loss function.
- Backward pass (back-propagation): Estimate dictionary H.
- Equivalent to alternating minimization in CDL.

Inference: Once trained, the inference (forward pass) is fast.

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 12 / 22

Repurpose DCEA for supervised tasks with two modifications

- **1** Loss function: Any supervised loss function, e.g., reconstruction MSE loss or perceptual loss.
- 2 Architecture: Relax the constraints → Untie the weights of encoder and decoder, learn the bias b.

	Encoder	Decoder
Original		$\mathbf{H}\mathbf{x}_T$
Relaxed	$\mathbf{x}_{t} = \mathcal{S}_{b} \left(\mathbf{x}_{t-1}^{T} + \alpha (\mathbf{W}^{e})^{T} (\mathbf{y} - f^{-1} \left(\mathbf{W}^{d} \mathbf{x}_{t-1}^{T} \right) \right) \right)$	$\mathbf{H}\mathbf{x}_T$

• Further relaxations possible, i.e., deep & non-linear decoder.

3 Deep Convolutional Exponential Auto-encoder (DCEA)

4 Experiments

5 Conclusion

Poisson image denoising Baseline frameworks

Supervised? Description			
SPDA [5]	×	ECDL + patch-based	
CA [6]	1	denoising NN	
DCEA-C (ours)	1	constrained DCEA (tied weights)	
DCEA-UC (ours)	1	unconstrained DCEA (untied weights)	

PSNR performance on test dataset

	SPDA	CA	DCEA-C	DCEA-UC
Peak 1 Set12	20.39	21.51	20.72	21.37
BSD68		21.78	21.27	21.84
Peak 2 Set12	21.70	22.97	22.02	22.79
BSD68		22.90	22.31	22.92
Peak 4 Set12	22.56	24.40	23.51	24.37
BSD68		23.98	23.54	24.10
# of Params $ 160K 655K $			20K	61K

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 15 / 22

Poisson image denoising



Poisson image denoising

	SPDA	CA	DCEA-C	DCEA-UC
Peak 1 Set12	20.39	21.51	20.72	21.37
BSD68		21.78	21.27	21.84
Peak 2 Set12	21.70	22.97	22.02	22.79
BSD68		22.90	22.31	22.92
Peak 4 Set12	22.56	24.40	23.51	24.37
BSD68		23.98	23.54	24.10
# of Params	160 K	655K	20K	61K

Classical ECDL: SPDA vs. DCEA-C

 \Rightarrow better denoising + *much more efficient*

 \Rightarrow classical inference task leveraging scalability of NN

• Denoising NN: CA vs. DCEA-UC

 \Rightarrow competitive denoising + much less parameters

 \Rightarrow NN architecture leveraging generative model paradigm

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 17 / 22

CDL for simulated binomial data

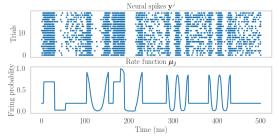


Figure: Example of simulated neural spikes and the rate (truth)

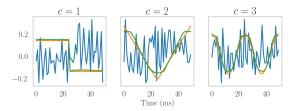
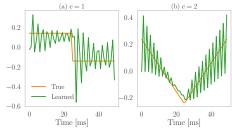


Figure: Random initialized (Blue), true (Orange), and learned templates (Green)

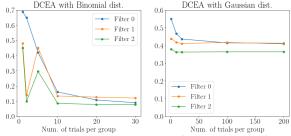
Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 18 / 22

CDL for simulated binomial data

• If we untie the weights, i.e., relax generative model constraints



• If we treat binomial data as Gaussian obs., i.e., model mismatch



Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 19 / 22

3 Deep Convolutional Exponential Auto-encoder (DCEA)

4 Experiments

Conclusion

In conclusion, Deep Convolutional Exponential Auto-encoder (DCEA)

- is a class of NN based on a generative model for CDL, using data from natural exponential family.
- shows competitive performance in Poisson denoising tasks against SOTA frameworks, *with an order of magnitude fewer* trainable parameters (**supervised task**).
- is able to learn accurate convolutional patterns in ECDL task with simulated binomial and real neural spiking observations (**unsupervised task**).

Reference

I. Daubechies, M. Defrise, and C. De Mol.

An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics*, 57(11):1413–1457, 2004.

Karol Gregor and Yann Lecun.

Learning fast approximations of sparse coding. In International Conference on Machine Learning, pages 399–406, 2010.

D. Simon and M. Elad.

Rethinking the CSC model for natural images. In Proc. Advances in Neural Information Processing Systems 33 (NeurIPS), 2019.

Joseph Salmon, Zachary Harmany, Charles-Alban Deledalle, and Rebecca Willett. Poisson noise reduction with non-local pca. Journal of Mathematical Imaging and Vision, 48(2):279–294, Feb 2014.

Raja Giryes and Michael Elad.

Sparsity-based poisson denoising with dictionary learning. IEEE Transactions on Image Processing, 23(12):5057–5069, 2014.

Tal Remez, Or Litany, Raja Giryes, and Alexander M. Bronstein. Class-aware fully-convolutional gaussian and poisson denoising. *CoRR*, abs/1808.06562, 2018.