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Motivation

Deep Learning

• Fast and scalable 3

• Not interpretable 7

• Memory and computationally
expensive 7

Signal Processing (SP)

Generative models

e.g., sparse coding model

p(y | x) = Hx+ εεε, x is sparse

• Slow and not scalable 7

• Interpretable 3

• Memory efficient 3

• Benefit from scalability of deep learning for traditional SP tasks.

• Guide to design interpretable and memory efficient networks.
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Convolutional Dictionary Learning (CDL)

Generative model for each data j

yj =

C∑
c=1

hc ∗ xj
c + εεεj = Hxj + εεεj , εεεj ∼ N (0, σ2I)

where xj
c is sparse.

Goal: Learn H that maps sparse representation xj to data yj .

min
{hc}Cc=1,{xj}Jj=1

1

2

J∑
j=1

‖yj −Hxj‖22 + λ‖xj‖1

• min w.r.t. xj → Convolutional Sparse Coding (CSC).

• min w.r.t. H and xj → Convolutional Dictionary Learning (CDL).
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Unfolding Networks

Solve CSC and CDL by iterative proximal gradient algorithm.

y ỹt αHT xt xT

H

ISTA [1]:
-

y We xt xT

S

LISTA [2]:

y ỹt We xt xT H

Wd

CSCNet [3]:
-
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y ỹt αHT xt xT

H

ISTA [1]:
-

y We xt xT

S

LISTA [2]:
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What if the observations are no longer Gaussian?

Count-valued data

Fingerprint Photon-based imaging

Classical CDL approach: Alternating minimization with a Poisson
generative model [4, 5].

• Unsupervised 3

• Follows a generative model ⇒ interpretable 3

• Not scalable (can take minutes ∼ hours to denoise single image) 7
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Our Contributions

y ỹt αHT xt xT H

Hf−1(·)

DecoderEncoder

-

Repeat T times

• Auto-encoder inspired by CDL, termed Deep Convolutional
Exponential Auto-encoder (DCEA), for non real-valued data

• Demonstration of the flexibility of DCEA for both

• unsupervised task, e.g., CDL
• supervised task, e.g., Poisson denoising problem

• Gradient dynamics of shallow exponential auto-encoder (SEA)

• Prove that SEA recovers parameters of the generative model.
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Deep Convolutional Exponential Auto-encoder
Problem description

Natural exponential family with convolutional generative model:

log p(y|µµµ) = f
(
µµµ
)
Ty + g(y)−B

(
µµµ
)
, where f(µµµ) = Hx, x is sparse.

y B(z) Inverse link: f−1(·)
Gaussian R zTz I(·)
Binomial [0..M ] -1T log(1− z) sigmoid(·)
Poisson [0..∞) 1Tz exp(·)

Exponential Convolutional Dictionary Learning (ECDL):

min
H,x

negative log-likelihood︷ ︸︸ ︷
− log p(y|µµµ) +

code sparsity constraint︷ ︸︸ ︷
λ‖x‖1
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Deep Convolutional Exponential Auto-encoder
Network architecture

y ỹt αHT xt xT H

Hf−1(·)

DecoderEncoder

-

Repeat T times

Components for different distributions

y f−1(·) Encoder Unfolding (xt) Decoder (f(µ̂µµ))

Gaussian R I(·) Sb
(
xt−1 + αHTỹt

)
HxT

Binomial [0..M ] sigmoid(·) Sb
(
xt−1 + αHT( 1

M
ỹt)
)

HxT

Poisson [0..∞) exp(·) Sb
(
xt−1 + αHT (Elu(ỹt))

)
HxT

Harvard CRISP Convolutional dictionary learning based auto-encoders for natural exponential-family distributions 11 / 22



Deep Convolutional Exponential Auto-encoder
Training & inference

y ỹt αHT xt xT H

Hf−1(·)
y

L

Forward pass

Backward pass

-

Repeat T times

Training

• Forward pass: Estimate code xT & compute loss function.

• Backward pass (back-propagation): Estimate dictionary H.

• Equivalent to alternating minimization in CDL.

Inference: Once trained, the inference (forward pass) is fast.
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Unsupervised → Supervised

Repurpose DCEA for supervised tasks with two modifications

1 Loss function: Any supervised loss function, e.g., reconstruction
MSE loss or perceptual loss.

2 Architecture: Relax the constraints → Untie the weights of
encoder and decoder, learn the bias b.

Encoder Decoder

Original xt = Sb
(
xt−1 + αHT(y − f−1

(
Hxt−1

)
)
)

HxT

Relaxed xt = Sb
(
xt−1 + α(We)T(y − f−1

(
Wdxt−1

)
)
)

HxT

• Further relaxations possible, i.e., deep & non-linear decoder.
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Experiments
Poisson image denoising

Baseline frameworks

Supervised? Description

SPDA [5] 7 ECDL + patch-based
CA [6] 3 denoising NN
DCEA-C (ours) 3 constrained DCEA (tied weights)
DCEA-UC (ours) 3 unconstrained DCEA (untied weights)

PSNR performance on test dataset
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Experiments
Poisson image denoising

Original Noisy peak= 4 DCEA-C DCEA-UC

Original Noisy peak= 2 DCEA-C DCEA-UC
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Experiments
Poisson image denoising

• Classical ECDL: SPDA vs. DCEA-C

⇒ better denoising + much more efficient

⇒ classical inference task leveraging scalability of NN

• Denoising NN: CA vs. DCEA-UC

⇒ competitive denoising + much less parameters

⇒ NN architecture leveraging generative model paradigm
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Experiments
CDL for simulated binomial data

Figure: Example of simulated neural spikes and the rate (truth)

Figure: Random initialized (Blue), true (Orange), and learned templates (Green)
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Experiments
CDL for simulated binomial data

• If we untie the weights, i.e., relax generative model constraints
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(b) c = 2

• If we treat binomial data as Gaussian obs., i.e., model mismatch
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Conclusion

In conclusion, Deep Convolutional Exponential Auto-encoder (DCEA)

• is a class of NN based on a generative model for CDL, using data
from natural exponential family.

• shows competitive performance in Poisson denoising tasks against
SOTA frameworks, with an order of magnitude fewer trainable
parameters (supervised task).

• is able to learn accurate convolutional patterns in ECDL task with
simulated binomial and real neural spiking observations
(unsupervised task).
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