ICML 2020

Learning to Simulate and Design for Structural Engineering

Kai-Hung Chang

Research Scientist AEC Industry Future, Autodesk Research

AUTODESK.

Chin-Yi Cheng

Principal Research Scientist Al Lab, Autodesk Research Problem: Structural Design for Buildings

Why is this important?

Problem: Structural Design for Buildings

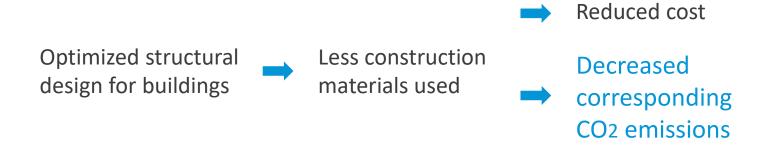
According to the International Energy Agency (IEA 2017),

Buildings and construction caused ~ 40% of global energy-related CO_2 emissions.

*Buildings: 28%; Construction 11%

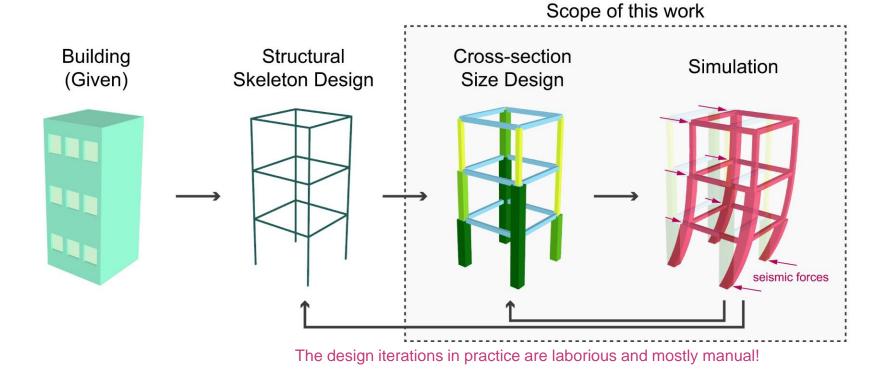
Source: derived with IEA (2017), World Energy Statistics and Balances, IEA/OECD, Paris, www.iea.org/statistics

Problem: Structural Design for Buildings

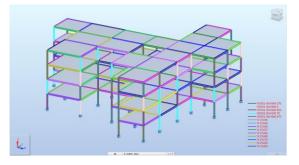


What Is Structural Design?

A common structural design workflow:

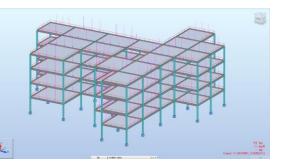


Components and Constraints



Cross Section Library

Column	Beam
HSSQ 16x16x0.375	W21x44
HSSQ 16x16x0.5	W21x48
HSSQ 16x16x0.625	W21x50
HSSQ 16x16x0.75	W21x57
HSSQ 16x16x0.875	W21x62
	W21x68
	W21x73
	W21x83
	W21x93



Load Cases

Dead Load (L)

- Self Weight
- Super-imposed
- Roof
- Cladding Load

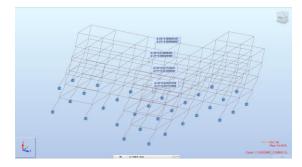
Live Load (Lr)

- Floor
- Roof

Seismic (E)

Combination

- 1.2D + 1.6L + 0.5Lr
- 0.9D + 1.0E (X and Y)

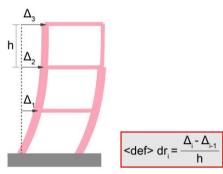


Simulation Results

Drift Ratio in Ex and Ey

For each story

 dr_x, dr_y



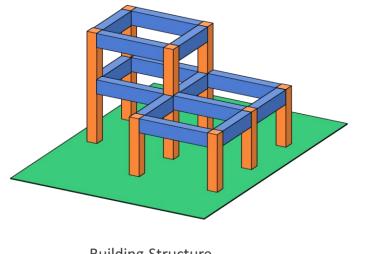
Pipeline

Swingparadelici (Nigional Size Coan) diorad Sitin) ization



Slow, and completely relying on the engineer's knowledge, experience, and intuition

What is the proper representation?



Building Structure

Voxel?

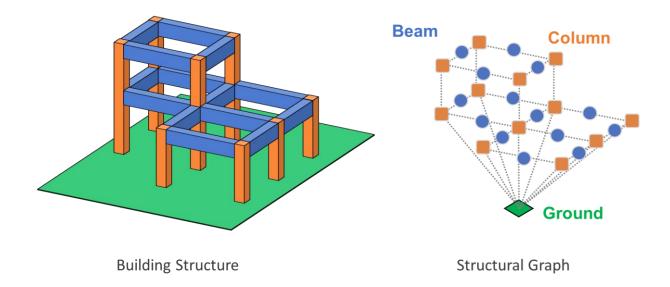
Point clouds?

Meshes?

Images with multi-views?

It contains discrete components, is usually large at scale, and has strong connectivity relations.

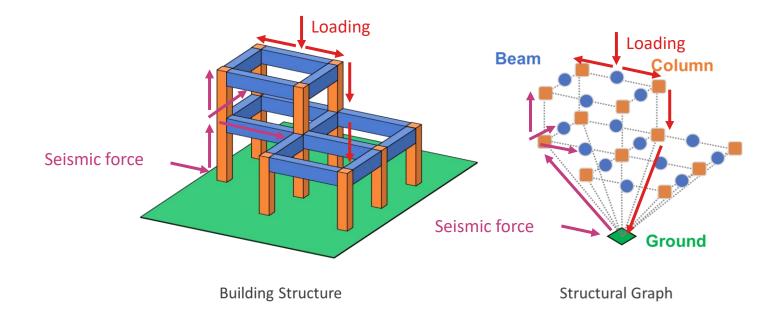
Intuition: Representing Structures as Graphs



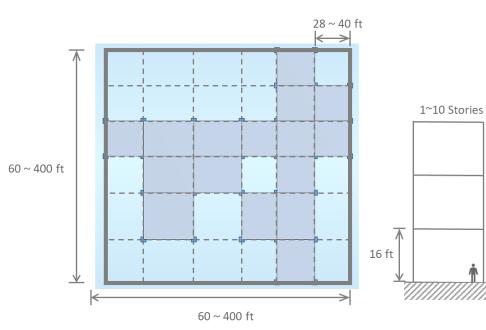
Node feature

Posi	tions	0: column	One hot vector of			
x ₁ , y ₁ , z ₁	x ₂ , y ₂ , z ₂	1: beam	cross section type	if roof	Metal deck area	if boundary

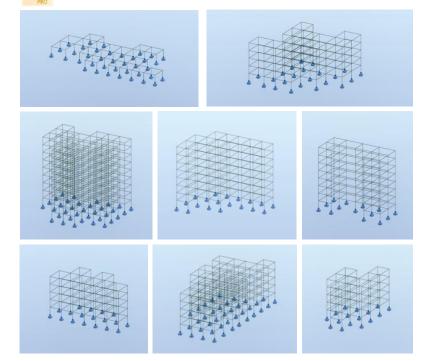
Force Transmissions vs. Message Passing



Data Generation

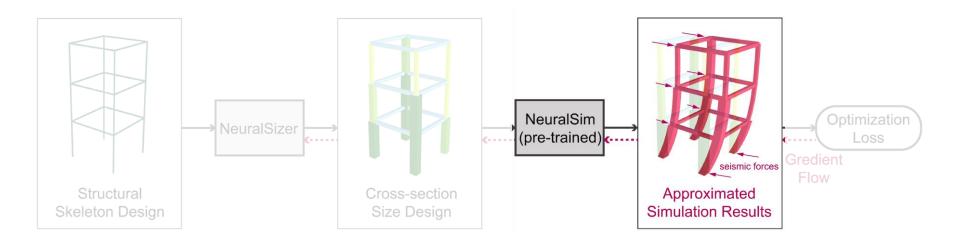


Using Autodesk[®] RobotTM Structural Analysis (free for educational use)



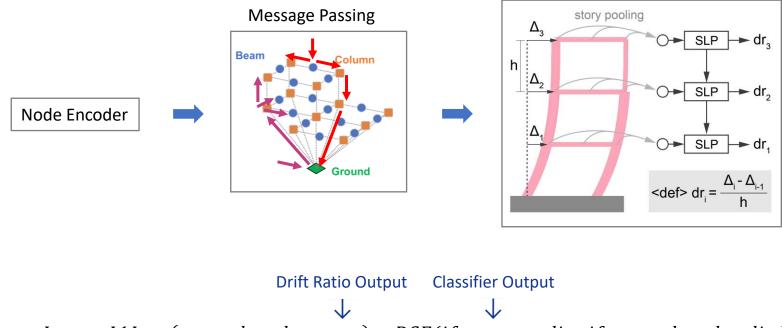
NeuralSim

A Graph-Based Neural Approximator for Structural Simulation



NeuralSim

A Graph-Based Neural Approximator for Structural Simulation



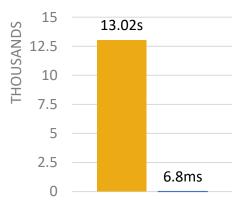
Structured Decoder

Loss = L1Loss(groundtruth, output) + BCE(if output > lim, if groundtruth > lim)

NeuralSim: Performance

Table 1. NeuralSim Performance Compared To Other Models				
Model	L1 Loss $\times 1e-4$	Relative Accuracy	Classification Accuracy	
GCN	16.01	94.86	89.22	
GIN	33.85	89.62	84.27	
GAT	10.87	96.41	93.35	
PGNN	9.39	96.72	94.83	
NeuralSim	7.57	97.36	95.64	
NeuralSim + PGNN	5.01	98.22	96.43	
NeuralSim(no SD)	10.24	96.65	92.71	
NeuralSim(only L1 loss)	16.47	95.24	n/a	

Speed: ~ 1900x faster

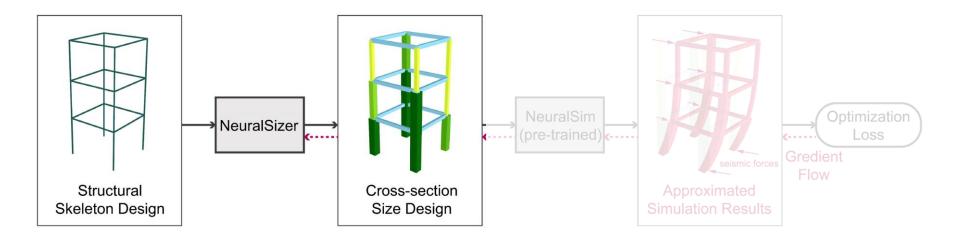


Robot Structural Analysis

NeuralSim

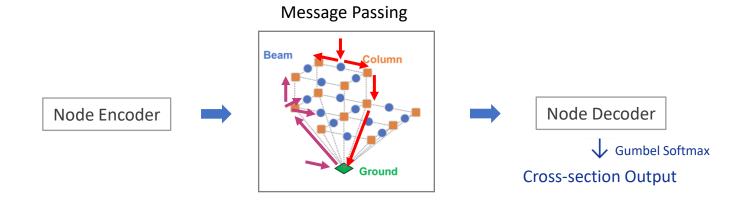
NeuralSizer

A Graph Neural Network for Proposing Optimal Size Design



NeuralSizer

A Graph Neural Network for Proposing Optimal Size Design



NeuralSizer + NeuralSim:

Optimization Setup min objective s.t. constraints

Mass Objective

 $obj = \sum_{bar} length \times area \times density$

Drift Ratio Constraints

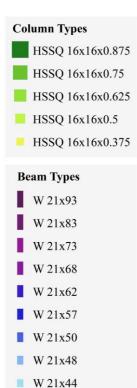
 $l_{dr} = Mean\{LeakyReLU(|dr_k| - lim)\} \le 0$

Variety Constraints

 $l_{var} = 1 - SumTop6(usage_{percentage}) = 0$

Entropy Constraints

$$l_H = Mean\{H_i\}/H_{max} - \alpha = 0$$



NeuralSizer + NeuralSim:

Table 3. NeuralSizer Results Under Different Scenarios					
Scenario	Objective Weight	Objective	Constraints		
Scenario	Objective weight	Mass Objective	Drift Ratio Constraint	Variety Constraint	
High Safety Factor	1	0.870	$6.00 \times 1e - 7$	$0.01 \times 1e - 8$	
	10	0.735	$1.34 \times 1e - 7$	$1.04 \times 1e - 8$	
Low Safaty Factor	1	0.592	$6.42 \times 1e - 5$	$1.67 \times 1e - 8$	
Low Safety Factor	10	0.596	$3.32 \times 1e - 5$	$1.78 \times 1e - 8$	

High / Low Safety Factor : Drift Ratio Limit 0.015 / 0.025

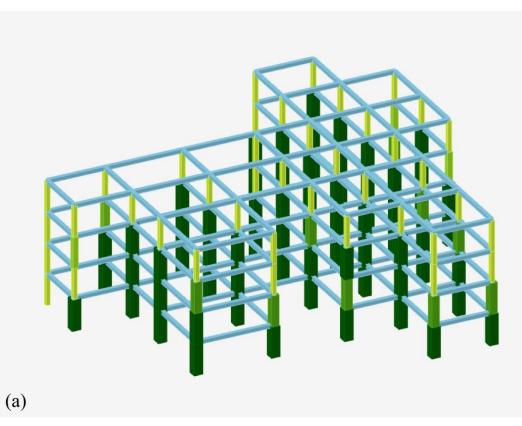
Train Data Test Data		Objective	Constraints	
ITalli Dala	Test Data	Mass Objective	Drift Ratio Constraint	Variety Constraint
$1 \sim 10$ story	$1 \sim 3$ story	0.738	$1.62 \times 1e - 7$	$0.80 \times 1e - 8$
(Baseline)	$4{\sim}7$ story	0.725	$1.28 \times 1e - 7$	$0.97 \times 1e - 8$
(Dasenne)	$8 \sim 10$ story	0.711	$1.69 \times 1e - 7$	$1.06 \times 1e - 8$
	$1 \sim 3$ story	0.773	$2.96 \times 1e - 7$	1.30×1e-8
$4 \sim 7$ story	$4{\sim}7$ story	0.746	$3.50 \times 1e - 7$	$1.25 \times 1e - 8$
	$8 \sim 10$ story	0.728	$3.68 \times 1e - 7$	$1.01 \times 1e - 8$

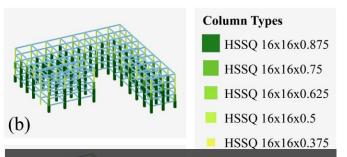
Table 4. NeuralSizer Generalizability (High Safety Factor, Objective Weight = 10)

Inference Time: 5.41ms

NeuralSizer + NeuralSim:

Result Visualization





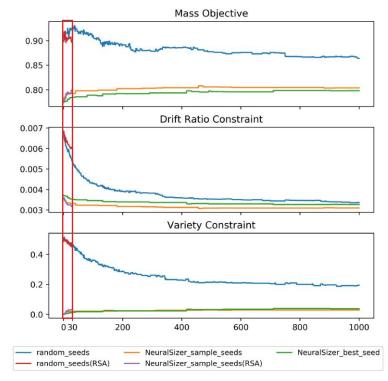
Structural Engineers' Insights

- 1. Columns are generally_{21x83} thicker on lower floors_{1x73}
- 2. Prioritize using stronger columns over beams^{v 21x62} w 21x57
- 3. Similar patterns/strategies across different buildings

Speed Comparison with Genetic Algorithm (G.A.)

Table 5. Time Comparison of GA under Different Setups				
Setup	Time	Total	Time /	
		Iterations	Iteration	
NeuroSizer	10.07 ms	-	-	
GA + RSA	24 hr	30	-	
$\rightarrow (estimated)$	2 weeks	1000	20.16 mins	
GA + NeuralSim	30 mins	1000	0.03 mins	

Figure 3. Performance Curves of GA Using Different Seeding Approaches.



G.A. with Random vs. NeuralSizer Seed

Tabl	le 6. NeuralSizer	· Seeding Perfor	mance	
Metric	Mass Objective	Drift Ratio Constraint	Variety Constraint	
High Safe	ty Factor			This is just an illustrati
1 2 3	232.60% 7.43% 0	115.30% 25.70% 25.6	186.20% 95.82% 0	1 Random seed
Low Safet	y Factor			2
1	83.15%	95.35%	156.22%	NeuralSizer sampled seed
2	4.16%	49.22%	32.53%	3 ↔
3	128	0	0	

Conclusion

- We propose an end-to-end pipeline for cross-section size design optimization problem in structural engineering
 - NeuralSim Fast, accurate
 - NeuralSizer Qualified design comparable GA results

 Research on improving building and construction performance can bring positive impact, especially on energy consumptions and CO₂ emissions

Open-source data is public at <u>https://github.com/AutodeskAILab/LSDSE-Dataset</u>