Improving Transformer Optimization Through Better Initialization

Xiao Shi Huang, Felipe Perez*, Jimmy Ba, Maksims Volkovs*

- Transformer in Detail
- Removing Warmup: T-Fixup
- Experimental Results
- Summary

Agenda

Transformer

- Encoder-Decoder architecture
- Residual backbone
- Multi-Headed Attention in ResBlock
- LayerNorm after every residual block

Training

- Adam optimizer
- Inverse square root learning rate decay
- Learning rate warmup

Necessity of Warmup

- Gradient histogram

layer6

Necessity of Warmup

- LayerNorm in Backpropagation^[2]

$$\left\|\frac{\partial \mathrm{LN}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right\| = O\left(\frac{\sqrt{d}}{||\boldsymbol{x}||}\right)$$

- x: input to Layer Normalization
- d: dimension of x

Error signal decreases with a large input

laver6

Necessity of Warmup

- LayerNorm in Backpropagation^[2]

- Without LayerNorm:
 - Magnitude on backbone grows with layer depth

layer6

- Without LayerNorm:
 - Magnitude on backbone grows with layer depth
- With LayerNorm:
 - Reset to unit magnitude

laver6

- Without LayerNorm:
 - Magnitude on backbone grows with layer depth
- With LayerNorm:
 - Reset to unit magnitude

laver6

- Parameter-Controller Growth

Goal: Control the total change on the output of the transformer after a gradient update.

Control output change in residual blocks:

- Feedforward blocks as in Fixup
- **Theorem:** For Attention blocks, this is controlled when:

 $\|v\|^2 \|w\|^2 + \|w\|^2 \|m\|^2 + \|v\|^2 \|m\|^2 = \Theta(1/L)$

laver 6

- v: Value projection matrix
- w: mixing matrix
- m: Value input
- $L: \operatorname{number}$ of layers

- T-Fixup Initialization
 - Xavier Initialization for all projection matrices
 - Gaussian initialization for embedding layers
 - Scale embedding layers and decoder parameters by (9N)^{-1/4}
 - Scale encoder parameters by 0.67N^{-1/4}

laver6

Experimental Results

T-Fixup on Standard Transformer

Model	IWSLT'14 _{small} De-En	IWSLT'14 _{small} En-De	WMT'18 _{base} Fi-En	WMT'17 _{base} En-De	WMT'17 _{big} En-De
Baseline	34.2	28.6	25.25	27.3	29.3
Pre-LN ^[2]	-	-	_	27.1	28.7
Fixup ^[3]	34.5	_	_	_	29.3
RAdam ^[1] , no warmup	34.8	28.5	-	-	_
T-Fixup, no LN, no warmup	35.5	29.4	25.7	29.1	29.7

Table 1. NMT Test BLEU Scores

- T-Fixup achieves consistently higher performance with less structure

T-Fixup on Standard Transformer: gradients

-

- Gradient and Adam Update Magnitudes
 - Vanilla Transformer Without Warmup
 - vanishing gradient
 - T-Fixup Without Warmup
 - stable error signal throughout training

T-Fixup on Deeper Transformer

Model	Layers	BLEU
Baseline	6	27.3
Pre-LN ^[2]	20	28.9
$DLCL^{[4]}$	25	29.2
DLCL-Pre-LN ^[4]	30	29.3
T-Fixup	6	29.1
	20	29.4
	30	29.7

Model	Layers	BLEU	
Baseline	6	27.6	
DS-Init ^[5]	12	28.6	
	20	28.7	
$LRI^{[6]}$	12	28.7	
	24	29.5	
T-Fixup	12	29.3	
	20	29.6	
	30	30.1	

Table 2. WMT'17 En-De BLEU.

Table 3. WMT'14 En-De BLEU

- T-Fixup outperforms all competitive models with equal or less layers

T-Fixup on Ultra-Deep Transformer

- IWSLT'14 De-En dataset, 64(embed)-128(MLP hidden)-2(head) Transformer

layer6

T-Fixup on Large Batch Training

- WMT'17 En-De Dataset, WMT_{base} Transformer

Summary

Summary

- Requirement for learning rate warmup: Adam + LayerNorm
- T-Fixup Initialization
 - Superior performance on NMT
 - Ultra-Deep Transformer
- Future Work

Acknowledgement

Computer Science UNIVERSITY OF TORONTO

Thank you! Questions?

Contact: Xiao Shi (Gary) Huang gary@layer6.ai

References

[1]: Liu, L. etc. On the variance of the adaptive learning rate and beyond. In ICLR, 2020

[2]: Xiong, R. etc. On layer normalization in the transformer architecture. In ICML, 2020

[3]: Zhang, H. etc. Fixup initialization: residual learning without normalization, In ICLR, 2019

[4]: Wang. Q. etc. Learning deep transformer models for machine translation. In ACL, 2019

[5]: Zhang, B. etc. *Improving deep transformer with depth-scaled initialization and merged attention*. In EMNLP, 2019

[6]: Xu. H. etc. *Why deep transformers are difficult to converge? From computation order to Lipschitz restricted parameter initialization.* In Arxiv

