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Transformer

- Encoder-Decoder architecture

- Residual backbone

- Multi-Headed Attention in ResBlock

- LayerNorm after every residual block
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- Adam optimizer

- Inverse square root learning rate decay

- Learning rate warmup

-

Training
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Necessity of Warmup
- Gradient histogram



6

Necessity of Warmup

Error signal decreases with a large input

- LayerNorm in Backpropagation[2]

- x: input to Layer Normalization
- d: dimension of x
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Necessity of Warmup
- LayerNorm in Backpropagation[2]
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Removing Warmup
- Without LayerNorm:

- Magnitude on backbone 

grows with layer depth
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Removing Warmup
- Without LayerNorm:

- Magnitude on backbone 

grows with layer depth

- With LayerNorm:

- Reset to unit magnitude



Removing Warmup
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- Without LayerNorm:

- Magnitude on backbone 

grows with layer depth

- With LayerNorm:

- Reset to unit magnitude

- Parameter-Controller Growth



Removing Warmup
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Goal: Control the total change on the output 

of the transformer after a gradient update.

Control output change in residual blocks: 

- Feedforward blocks as in Fixup

- Theorem:  For Attention blocks, this is 

controlled when: 



Removing Warmup
- T-Fixup Initialization

- Xavier Initialization for all 

projection matrices

- Gaussian initialization for 

embedding layers

- Scale embedding layers and 

decoder parameters by (9N)-1/4

- Scale encoder parameters by 

0.67N-1/4
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Experimental Results

13



14

T-Fixup on Standard Transformer

- T-Fixup achieves consistently higher performance with less structure
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T-Fixup on Standard Transformer: gradients
- Gradient and Adam Update Magnitudes

- Vanilla Transformer Without Warmup

- vanishing gradient

-  T-Fixup Without Warmup

- stable error signal throughout 

training
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T-Fixup on Deeper Transformer

- T-Fixup outperforms all competitive models with equal or less layers
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T-Fixup on Ultra-Deep Transformer
- IWSLT’14 De-En dataset, 64(embed)-128(MLP hidden)-2(head) Transformer 
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T-Fixup on Large Batch Training
- WMT’17 En-De Dataset, WMTbase Transformer



Summary
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Summary
- Requirement for learning rate warmup: Adam + LayerNorm

- T-Fixup Initialization

- Superior performance on NMT

- Ultra-Deep Transformer

- Future Work
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