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Our Concept

• We propose the first exact algorithm that transforms a tree ensemble into a
born-again decision tree (BA tree) that is:

I Optimal in size (number of leaves or depth), and
I Faithful to the tree ensemble in its entire feature space.

• The BA tree is effectively a different representation of the same
decision function.

We seek a single —minimal-size— decision tree that faithfully
reproduces the decision function of the random forest.
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Why interpretability is critical

• Machine learning is becoming
widespread, even for high stakes
decisions:

I Recurrence predictions in
medicine

I Custody decisions in criminal
justice

I Credit risk evaluations...

• Some studies suggest that there is a
trade-off between algorithm
accuracy and interpretability

I This is not always the case [1]

We need interpretable and accurate algorithms to leverage the best
of both worlds
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Related Research

Thinning tree
ensembles

Pruning some weak learners
[18, 21, 22, 25]

Replacing the tree ensemble
by a simpler classifier

[2, 7, 19, 23]

Rule extraction via
bayesian model selection

[14]

Extracting a single tree
from a tree ensemble by

actively sampling training
points [3, 4]

Thinning neural
networks

Model compression and
knowledge distillation

[8, 15]: Using a “teacher”
to train a compact “student’

with similar knowledge.

Creating soft decision trees
from a neural network [11],

or decomposing the
gradient in knowledge

distillation [12].

Simplifying neural networks
[9, 10] or synthetizing them

as an interpretable
simulation model [17].

Optimal decision
trees

Linear programming
algorithms have been

exploited to find linear
combination splits [5].

Extensive study of global
optimization methods,
based on mixed-integer

programming or dynamic
programming, for the con-
struction of optimal deci-

sion trees [6, 13, 16, 20, 24]

Thinning algorithms do not guarantee faithfulness
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Methodology

Construction Process
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Methodology

Problem 1: Born-Again Tree Ensemble

Given a tree ensemble T , we search for a decision tree T of minimal size
such that FT (x) = FT (x) for all x ∈ Rp.

Theorem 1

Problem 1 is NP-hard when optimizing depth, number of leaves, or any
hierarchy of these two objectives.

Verifying that a given solution is feasible (faithful) is NP-hard.
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Methodology

Dynamic Program 1

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a
region (zl, zr). Then:

Φ(zl, zr) =


0 if id(zl, zr)

min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1 + max{Φ(zl, zrjl),Φ(zljl, z

r)}
}}

,

in which id(zl, zr) takes value True iff all cells z such that zl ≤ z ≤ zr

are from the same class (i.e. base case).

Issue 1

Detecting base cases

Issue 2

Numerous recursive calls
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Circumventing Issue 1

We tried several alternatives to efficiently check base cases. The best
approach we found consisted in including the base case evaluation within
the DP:

Dynamic Program 2

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a
region (zl, zr). Then:

Φ(zl, zr) = min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1jl(z

l, zr) + max{Φ(zl, zrjl),Φ(zljl, z
r)}
}}

where 1jl(z
l, zr) =

0
if Φ(zl, zrjl) = Φ(zljl, z

r) = 0
and FT (zl) = FT (zr);

1 otherwise.
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Circumventing Issue 2

We exploit two simple properties to reduce the number of
recursive calls:

Property 2

If Φ(zl, zr
jl) ≥ Φ(zl

jl, z
r) then for all l′ > l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

Property 3

If Φ(zl, zr
jl) ≤ Φ(zl

jl, z
r) then for all l′ < l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

 

zL 

zR 

φ=2 φ=1 

zjl
R 

zjl
L 

Allowing us to search for the best hyperplane level for each feature with a binary
search.

References 9/18



Experimental Analyses

Datasets

We used datasets from diverse applications, including medicine (BC, PD),
criminal justice (COMPAS), and credit scoring (FICO).

Data set n p K CD Src.

BC – Breast-Cancer 683 9 2 65-35 UCI
CP – COMPAS 6907 12 2 54-46 HuEtAl
FI – FICO 10459 17 2 52-48 HuEtAl
HT – HTRU2 17898 8 2 91-9 UCI
PD – Pima-Diabetes 768 8 2 65-35 SmithEtAl
SE – Seeds 210 7 3 33-33-33 UCI

Data Preparation

One-hot encoding for categorical variables.
Continuous variables binned into ten ordinal scales.
Generate training and test samples for all data sets by ten-fold cross validation.
For each fold and each dataset, generate a random forest composed of 10
trees with a depth of 3.
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Experimental Analyses

Scalability
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Computational time(ms) of the DP as a function of the number of samples, features and
trees.
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Experimental Analyses

Simplicity

Depth and number of leaves of the born-again trees:

D L DL
Data set Depth # Leaves Depth # Leaves Depth # Leaves

BC 12.5 2279.4 18.0 890.1 12.5 1042.3
CP 8.9 119.9 8.9 37.1 8.9 37.1
FI 8.6 71.3 8.6 39.2 8.6 39.2
HT 6.0 20.2 6.3 11.9 6.0 12.0
PD 9.6 460.1 15.0 169.7 9.6 206.7
SE 10.2 450.9 13.8 214.6 10.2 261.0

Avg. 9.3 567.0 11.8 227.1 9.3 266.4

Analysis

The decision function of a random forest is visibly complex
One main reason: Incompatible feature combinations are being represented,
and the decision function of the RF is not necessarily uniform on these regions
due to the other features.
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Experimental Analyses

Post-Pruning

Eliminate inexpressive tree sub-regions. From bottom to top:

• Verify whether both sides of a split contain at least one sample

• Eliminate every such empty split

References 13/18



Experimental Analyses

Analysis

With post-pruning, faithfulness is no longer guaranteed per definition.
We need to experimentally evaluate:

I Impact on simplicity
I Impact on accuracy

Depth and number of leaves:

RF BA-Tree BA+P

Leaves Depth Leaves Depth Leaves

BC 61.1 12.5 2279.4 9.1 35.9

CP 46.7 8.9 119.9 7.0 31.2

FI 47.3 8.6 71.3 6.5 15.8

HT 42.6 6.0 20.2 5.1 13.2

PD 53.7 9.6 460.1 9.4 79.0

SE 55.7 10.2 450.9 7.5 21.5

Avg. 51.2 9.3 567.0 7.4 32.8

Accuracy and F1 score comparison:

RF BA-Tree BA+P

Acc F1 Acc F1 Acc F1

BC 0.953 0.949 0.953 0.949 0.946 0.941

CP 0.660 0.650 0.660 0.650 0.660 0.650

FI 0.697 0.690 0.697 0.690 0.697 0.690

HT 0.977 0.909 0.977 0.909 0.977 0.909

PD 0.746 0.692 0.746 0.692 0.750 0.700

SE 0.790 0.479 0.790 0.479 0.790 0.481

Avg. 0.804 0.728 0.804 0.728 0.803 0.729
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Conclusions

• Compact representations of the decision functions of random forests, as a
single —minimal size— decision tree.

• Sheds a new light on random forests visualization and
interpretability.

• Progressing towards interpretable models is an important step towards
addressing bias and data mistakes in learning algorithms.

• Optimal classifiers can be fairly complex. Indeed, BA-trees reproduce the
complete decision function for all regions of the feature space.

I Pruning can solve this issue
I Heuristics can be used for datasets which are too large to be solved to

optimality
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