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Deep Neural Networks 

Are Deeper NNs more powerful? 



Approximation Theory (1885-today)

ReLU activation units
Semi-algebraic units [Telgarsky 15’,16’]:  
piecewise polynomials, max/min gates,  

and (boosted) decision trees



Expressivity of NNs 
Which functions can NNs approximate?  

Cybenko [1989]: 
Any continuous function can be represented as a (hidden) 1-layer 
sigmoid net (with “some” width). 
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L=100 
400 vs 10000 ReLUs 

Tent or Triangle map



[Telgarsky’15,’16] Tantalizing open question:
1. Can we understand larger families of functions?
2. Why is the tent map suitable to prove depth separations?

(what if we slightly tweak 
the tent map?)

Prior Work 
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[Telgarsky’15,’16] Tantalizing open question:
1. Can we understand larger families of functions?
2. Why is the tent map suitable to prove depth separations?

(what if we slightly tweak 
the tent map?)

Prior Work 
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2. We show tight connections between Lipschitz constant, 
periods of f, and oscillations.

3. Sharper period-dependent depth-width tradeoffs and  
easy constructions of examples.

 Connections to Dynamical Systems [ICLR’20]:

Our work in ICML 2020

4. Experimental validation of our theoretical results.

1. We get L1-approximation error and  
not just classification error.



Tent Map (by Telgarsky) 



exponentially 
many bumps 

Repeated Compositions 



exponentially 
many bumps 

Repeated Compositions 
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ReLU NN: 
#linearRegions:  



Our starting observation: Period 3



Li-Yorke Chaos (1975)



Sharkovsky’s Theorem (1964) 



Sharkovsky’s Theorem (1964) 



Period-dependent Trade-offs 
Main Lemma:

[ICLR 2020]
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[ICLR 2020]
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Main Lemma:

Period-dependent Trade-offs [ICLR 2020]

Informal Main Result:
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Further connections to Dynamical Systems:

Our work in ICML 2020

Is it so hard to obtain L1 guarantees?

Period 3 of f, only informs us on 3 values of f.
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Lemma (Lower Bound on L):

Periods, Oscillations, Lipschitz

Informal Main Result (Lipschitz matches oscillations):



Proof Sketch

Definitions:

Fact [Telgarsky’16]:



Proof Sketch

Definitions:

Claim:



Proof Sketch



2. We show tight connections between Lipschitz constant, 
periods of f, and oscillations.

3. Sharper period-dependent depth-width tradeoffs and  
easy constructions of examples.

Further connections to Dynamical Systems:

Our work in ICML 2020

4. Experimental validation of our theoretical results.

1. We get L1-approximation error and  
not just classification error.



Periods, Oscillations

Main Lemma:

If f has period p, how many oscillations?

Period-specific threshold phenomenon:



Proof Sketch
If f has period p, how many oscillations?

Oscillations Root of  
characteristic



Proof Sketch
If f has period p, how many oscillations?



Tight examples - Sensitivity

Function of period p & Lipschitz  
matching oscillation growth:

If slope is less than 1.618,  
then no period 3 appears
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Experimental Section

Goals:

2. Validate our theoretical threshold  
for separating shallow NNs from deep.

1. Instantiate benefits of depth  
for a period-specific task.

Setting: f(x)=1.618|x|-1

Training: Define a regression task on 10K datapoints 
chosen uniformly at random by evaluating f. We use 
Adam as the optimizer and train for 1500 epochs.

Overfitting: We are interested in representation.

Width: 20, #layers: 1 up to 5

Easy Task: We take only 8 compositions of f.

Hard Task: We take 40 compositions of f.



Regression error vs depth

for easy task

Classification error vs depth 

for the easy task appearing in


our ICLR 2020 paper

Easy Task: We take only 8 compositions of f.

Adding depth does help in reducing error.



Hard Task: We take 40 compositions of f.

Error (blue line) is independent of depth  
and is extremely close to theoretical bound (orange line).



Recap

2. Tight connections between Lipschitz, periods,oscillations.

Natural property of continuous funcitons: Period
1. Sharp depth-width tradeoffs and L1-separations

Simple constructions useful for proving separations.
Future Work
Understanding optimization (e.g., Malach, Shalev-Shwartz’19)
Unifying notions of complexity used for separations: 
trajectory length, global curvature, algrebraic varieties

Topological Entropy from Dynamical Systems
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