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General-Purpose Representations of Source Code
● Success of learned representations (e.g., ELMo, GPT, BERT, etc.) in NLU

● Source code is a formal description of an executable task.

● Source code is a means to communicate developer intent.

○ Meaningful identifier names

○ Natural-language documentation

○ Convey a lot of semantic information

● Could the following code be buggy?

number_of_batches = batch_size / number_of_examples
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Can we exploit characteristics of source code to learn general-purpose 
representations that can be used effectively in downstream tasks?

Pre-train a deep bidirectional Transformer encoder from unlabeled code.

Use the pre-training objectives, masked language modeling (MLM) and 
next-sentence prediction (NSP), popularized by BERT.

Design and evaluate on a new benchmark of six code-understanding tasks -- 
including five classification and one multi-headed pointer prediction task.

*BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

CuBERT: Code Understanding BERT*

3

https://arxiv.org/abs/1810.04805


Experimental Results
Q1: How do contextual embeddings compare against word embeddings?

CuBERT outperforms BiLSTM models initialized with pre-trained 
source-code-specific Word2Vec embeddings by +2.9% to +22%.

Q2: Is Transformer (without pre-training) all you need?

CuBERT outperforms Transformers trained from scratch by +5.8% to +23%.

Q3: What is the effect of reduced supervision?

CuBERT achieves results comparable to the baselines with 1/3rd or 2/3rd of 
training data, and within 2 or 10 fine-tuning epochs (the default being 20 epochs).
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Experimental Results
Q4: How does the context length affect CuBERT’s performance?

Increasing context length (128 -> 256 -> 512)  tends to improve the performance.

Q5: How does CuBERT perform on the more complex task of predicting a 
two-headed pointer in comparison to SOTA approaches?

CuBERT achieves +33% (absolute) localization+repair accuracy in comparison to 
(Vasic et al. 2019) and +6.2% (absolute) in comparison to (Hellendoorn et al., 
2020) on the corresponding datasets.
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Experimental Setup
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New Benchmark of Code-understanding Tasks
Built using the ETH Py150 corpus (Raychev et al. 2016).

Motivated in part by code-understanding tasks studied in the literature.

● Swapped operands (binary classification) (Pradel & Sen 2018)
● Wrong binary operator (binary classification) (Pradel & Sen 2018)
● Exception-type (multi-class classification)
● Function-docstring mismatch (sentence-pair classification) (Louis et al. (2018)
● Variable-misuse (binary classification) (Allamanis et al. 2018)
● Variable-misuse localization and repair (multi-headed pointer prediction) 

(Vasic et al. 2019)
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Correct operator:  <

Example of Wrong Binary 
Operator Classification

def__gt__(self,other):
  if isinstance(other,int) and other==0:
    return self.get_value()>0
  return other is not self
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Expected label:  OSError

Example of Exception Type Classification

try:

  subprocess.call(hook_value)

  return jsonify(success=True), 200

except __HOLE__ as e:

  return jsonify(success=False,

                 error=str(e)), 400

Multi-class classification with 20 top exception types as class labels.
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Example of Function Docstring Classification

Sentence #1:

'Get form initial data.'

Sentence #2:

def __add__(self, cov):

  return SumOfKernel(self, cov)

Sentence-pair classification problem



Variable event is used 

incorrectly instead of self.

Example of Variable Misuse Tasks

def on_resize(self, event):
  event.apply_zoom()
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Dealing with Code Duplicates
Open-source projects are replete with code duplicates. This can:

● Affect the reported model performance.
● Result in information leak between pre-training and fine-tuning corpora.
● Bias pre-training towards duplicated code.

Remedy code duplication by:

● Deduplicating the fine-tuning corpus in the fashion of Allamanis (2018) using 
Jaccard similarity over sets/multi-sets of tokens.

● Remove files with duplicates in the fine-tuning corpus from pre-training.
● Deduplicate the pre-training corpus.
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Related Work
Representation learning for programs

● Structured representations like abstract syntax trees (Alon et al., 2019) and 

data-flow/control-flow information (Allamanis et al., 2018; Hellendoorn et al., 

2020) used in specific software engineering tasks.

● An upcoming work by Feng et al. (2020) aims at solving NL-PL tasks by 

pre-training a BERT model on paired NL description and code, in a 

multi-lingual setting. CuBERT pre-training and fine-tuning (e.g., 

function-docstring task) also involves both code and natural language.
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Conclusions and Future Work
We present the first pre-trained contextual embedding of source code.

Our model, CuBERT, shows strong performance against baselines.

We hope that our models and benchmarks will be useful to the community.

Pre-training using structured representations of code, such as ASTs and graphs, 
that encode different types of information (e.g., data-flow and control-flow) will be 
an interesting future direction.

We envision more innovations on the pre-training setup, reduction in model size 
and pre-training cost, and novel applications of the pre-trained models.
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