FACT: A Diagnostic for Group Fairness Trade-offs

Joon Kim, CMU (joonsikk@cs.cmu.edu) Jiahao Chen, JPMorgan Al Research (jiahao.chen@jpmchase.com) Ameet Talwalkar, CMU (talwalkar@cmu.edu)

J.P.Morgan **Carnegie Mellon University**

Fairness in ML is becoming more important

- More application areas with societal impact
 - Credit decision/Loan approval lacksquare
 - Healthcare provision
 - Recidivism prediction
 - Facial recognition
- Quantitative notions of fairness:
 - Individual fairness
 - Group fairness
 - **Representation fairness**
 - Counterfactual fairness

Dissecting racial bias in an algorithm used to manage the health of populations

¹ Ziad Obermeyer^{1,2,*}, Brian Powers³, Christine Vogeli⁴, ¹ Sendhil Mullainathan^{5,*,†}

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification^{*}

Joy Buolamwini MIT Media Lab 75 Amherst St. Cambridge, MA 02139 JOYAB@MIT.EDU

Timnit Gebru Microsoft Research 641 Avenue of the Americas, New York, NY 10011

TIMNIT.GEBRU@MICROSOFT.COM

Why Group Fairness?

- Widely studied both in social sciences as a concept of *disparate impact*
- Practical instantiations
 - less than p:100. (U.S. Equal Employment Opportunity Commission)
- Intuitive to understand, even for non-ML experts
- Active area of research in ML
 - lacksquareopportunity, class balance, calibration, conditions accuracy equality ...

• *p-percent rule*: among the accepted subjects, the ratio between the subjects having a certain sensitive attribute to the subjects that do not have the attribute, should be no

predictive equality, predictive parity, demographic parity, equalized odds, equal

... but it comes with several trade-offs.

- Type1. Fairness vs. Fairness (impossibility and incompatibility)
 - some strong assumptions about the data and the model are satisfied."
 - Kleinberg et al. 2017, Chouldechova 2017, etc.
- Type2. Fairness vs. Performance

 - Zafar et al. 2015, Menon and Williamson 2018, etc.

\Rightarrow How to view them under a simple unified perspective?

• "It is not possible to satisfy certain multiple notions of fairness simultaneously unless

"Imposing fairness conditions tend to decrease the model's predictive performance."

Towards a systematic characterization of trade-offs

We will cover...

- Fairness-confusion tensor (FACT)
 - Provides a linear/quadratic characterization of group fairness notions
- Optimization problems over the fairness-confusion tensor
 - Solutions reflect the boundaries of the trade-off \bullet
 - One instance shows a general method for deriving fairness incompatibilities
 - One instance shows a connection to post-processing methods lacksquare
- Demonstration on use cases

Fairness-confusion Tensor & Group Fairness

• Fairness-confusion tensor = stacked confusion matrix per protected attributes (a)

$$\mathbf{z} = \begin{bmatrix} a = 0 \\ TP_a \ FP_a \\ FN_a \ TN_a \end{bmatrix} \stackrel{a=1}{\cdot} = (TP_1, FN_1, FN_1, FN_1)$$

- - The values are derived from the elements of the fairness-confusion tensor

 $FP_1, TN_1, TP_0, FN_0, FP_0, TN_0)^T/N$ $\in \mathscr{K}$

• Group fairness takes the form : (value r_1 from group 1) – (value r_0 from group 0) = 0

Linear/Quadratic Group Fairness

• Fairness conditions can be rewritten as a condition $\phi(z) = 0$ where

• Linear fairness: $\phi(\mathbf{z}) = \mathbf{A}\mathbf{z}$

• Quadratic fairness: $\phi(\mathbf{z}) = \frac{1}{2} \mathbf{z}^T B \mathbf{z}$

Demographic parity (DP)	$\Pr(\hat{y} = 1 \mathbf{a} = 1) = \Pr(\hat{y} = 1 \mathbf{a} = 0)$
	$\mathbf{A}_{\mathrm{DP}} = \frac{1}{N} \begin{pmatrix} N_0 & 0 & N_0 & 0 & -N_1 & 0 & -N_1 & 0 \end{pmatrix}$
Equality of opportunity (EOp)	$\Pr(\hat{y} = \hat{1} \hat{y} = 1, \mathbf{a} = 1) = \Pr(\hat{y} = 1 \hat{y} = 1, \mathbf{a} = 0)$
	$\mathbf{A}_{\text{EOP}} = rac{1}{N} \begin{pmatrix} M_0 & 0 & 0 & 0 & -M_1 & 0 & 0 \end{pmatrix}$
Predictive equality (PE)	$\Pr(\hat{y} = \hat{1} y = 0, \mathbf{a} = 1) = \Pr(\hat{y} = 1 y = 0, \mathbf{a} = 0)$
	$\mathbf{A}_{ ext{PE}} = rac{1}{N} \left(egin{array}{cccccccccccccccccccccccccccccccccccc$
Equalized odds (EOd)	$EOp \land PE$
Equal false negative rate (EFNR)	$Pr(\hat{y} = 0 y = 1, \mathbf{a} = 1) = \Pr(\hat{y} = 0 y = 1, \mathbf{a} = 0)$
	$\mathbf{A}_{\text{EFNR}} = \frac{1}{N} \begin{pmatrix} 0 & M_0 & 0 & 0 & 0 & -M_1 & 0 & 0 \end{pmatrix}$
Calibration within groups (CG)	$Pr(y=1 \hat{P}_{\theta}(\mathbf{x})=s, \mathbf{a}=1) = Pr(y=1 P_{\theta}(\mathbf{x})=s, \mathbf{a}=0) = s$
	$(1-v_1 0 -v_1 0 0 0 0 0)$
	$\mathbf{A}_{} = \begin{bmatrix} 0 & 1 - v_0 & 0 & -v_0 & 0 & 0 & 0 \end{bmatrix}$
	$\mathbf{A}_{CG} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 - v_1 & 0 & -v_1 & 0 \end{bmatrix}$
	$igvee 0 0 0 0 0 1 - v_0 0 - v_0 igvee$
Positive class balance (PCB)	$\mathbb{E}(P_{ heta} y=1,\mathbf{a}=1)=\mathbb{E}(P_{ heta} y=1,\mathbf{a}=0)$
	$\mathbf{A}_{\text{PCB}} = \min_{a}(M_{a}) \begin{pmatrix} \frac{v_{1}}{M_{1}} & \frac{v_{0}}{M_{1}} & 0 & 0 & -\frac{v_{1}}{M_{0}} & -\frac{v_{0}}{M_{0}} & 0 & 0 \end{pmatrix}$
Negative class balance (NCB)	$\mathbb{E}(P_{\theta} y=0,\mathbf{a}=1) = \mathbb{E}(P_{\theta} y=0,\mathbf{a}=0)$
	$\mathbf{A}_{ ext{NCB}} = \min_a (N_a - M_a) \left(egin{array}{cccc} 0 & 0 & rac{v_1}{N_1 - M_1} & rac{v_0}{N_1 - M_1} & 0 & 0 & -rac{v_1}{N_0 - M_0} & -rac{v_1}{N_0} & -rac{v_1}{$

Predictive parity (PP)	$Pr(y=1 \hat{y}=1,\mathbf{a}=1)=Pr(y=1 \hat{y}=1,\mathbf{a}=0)$
	$rac{1}{2} \mathbf{z}^T \mathbf{B}_{ ext{PP}} \mathbf{z} = (TP_1 FP_0 - TP_0 FP_1)/N^2$
Equal false omission rate (EFOR)	$Pr(y = 1 \hat{y} = 0, \mathbf{a} = 1) = Pr(y = 1 \hat{y} = 0, \mathbf{a} = 0)$
	$rac{1}{2} \mathbf{z}^T \mathbf{B}_{ ext{efor}} \mathbf{z} = (TN_1 F N_0 - TN_0 F N_1)/N^2$
Conditional accuracy equality (CA)	$PP \wedge EFOR$

Optimizing over the Fairness-confusion Tensor

Least-squares Accuracy-Fairness Optimality Problem (LAFOP)

performance criteria = classification error (accuracy)

- (ϵ, δ) -solutions: $\{z : c \cdot z \leq \delta, \|Az\| \leq \epsilon\}$
 - ulletconditions measured by ϵ

$$\lambda \|\mathbf{A}\mathbf{z}\|_2^2$$

$$\mathbf{c} = (0, 1, 1, 0, 0, 1, 1, 0)^T$$

fairness criteria = linear fairness

Demonstrate how the achievable performance δ can change across different fairness

Special Case I: Incompatibility among Fairness

When λ approaches infinity, solving LAFOP is equivalent to solving the following:

Incompatibility can be verified by the number of solutions to this linear system

Sets of fairness definitions

{CG, PP, DP, and any of EOp, PE, PCB, NCB, {CG, DP, and any of EOp, PE, PCB, NCB, EF {CG,EOp}, {CG,PCB}, {CG,EOp,PCB}, {CG, {CG,EFOR,PCB},{CG,EFOR,EOp,PCB} {CG,PE}, {CG,NCB}, {CG,EOp,NCB}, {CG, {CG.EFOR,NCB}, {CG.EFOR,EOp,NCB} {CG,EOd}, {CG, PCB, NCB} {CG,EOd,PCB} CG,EFOR,PCB,NCB},{CG,EFOR,EOd,PCB.

$$\mathbf{z} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \mathbf{b}_{const} \end{pmatrix}, \ \mathbf{z} \ge 0$$

ions
$= N_1$
= 1)

Special Case II: Post-processing

Model-specific LAFOP (MS-LAFOP) \bullet

$$\arg \min_{z \in \mathscr{X}} (\mathbf{c} \cdot \mathbf{z})^2 + \lambda \| \mathbf{A} \mathbf{z} \|$$

$$performance criteria$$

$$= \operatorname{accuracy}$$

$$fairness e$$

$$= \operatorname{linear} fairness e$$

such that

criteria airness

model-specific constraints on fairness

FACT Pareto Frontiers

- Set of (ϵ, δ) -solutions of LAFOP plotted over varying ϵ
- Model-agnostic case (MA): bounds should be interpreted w.r.t the Bayes error
- Model-specific case (MS): bounds are more realistic

A model-agnostic scenario

- Equalized Odds (EOd) and Demographic Parity (DP) dominates the behaviors of the curves in blue.
- Halted trajectories for Black and Red lines indicate incompatibility.
- Fair dataset yields a better trade-off scheme than the biased dataset.

A model-specific scenario: reduction to post-processing

- MS-LAFOP.
- FACT-solution finds a better classifier with a smaller trade-off.

We can compute a *mixing ratio* for post-processing methods using the solutions from

Discussions

- group fairness.
- Fairness-confusion tensor provides a unified perspective on group fairness.
- problem presented in the paper.
- Post-processing via FACT can be generalized to other notions of fairness.

FACT diagnostic for systematic reasoning about type1 and type2 trade-offs involving

Many results presented only involved linear fairness and accuracy (LAFOP, MS-LAFOP), but we can expect a more diverse results from the more general class of optimization

FACT: A Diagnostic for Group Fairness Trade-offs

Joon Kim, CMU (joonsikk@cs.cmu.edu) Jiahao Chen, JPMorgan Al Research (jiahao.chen@jpmchase.com) Ameet Talwalkar, CMU (talwalkar@cmu.edu)

Carnegie Mellon University J.P.Morgan

Website: <u>www.cs.cmu.edu/joonsikk</u>

Paper: https://arxiv.org/abs/2004.03424

