





# Cautious Adaptation For RL in Safety-Critical Settings

International Conference on Machine Learning 2020

Jesse Zhang<sup>1</sup>, Brian Cheung<sup>1</sup>, Chelsea Finn<sup>2</sup>, Sergey Levine<sup>1</sup>, Dinesh Jayaraman<sup>3</sup>

# Outline

- Short overview (4 Minutes)
- In-depth talk(11 Minutes)

# Introduction

- Real-world RL hazardous in safety-critical settings
- Hard to reset from real-life failures
- How to adapt to unseen environments safely?





## **Motivation**

• How do humans adapt?



# Motivation

- Safety-Critical Adaptation (SCA):
  - Pretraining: Sandbox environments
  - Adaptation: Safety-critical target environment

#### PRETRAINING

#### ADAPTATION





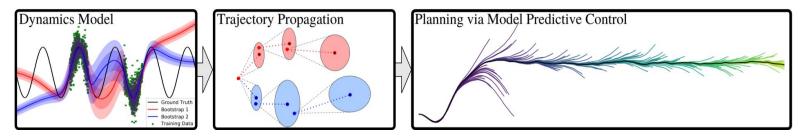
# Methodology

Transfer risk knowledge from prior experience

- Safety-Critical Adaptation (SCA)
- Cautious Adaptation in RL (CARL)

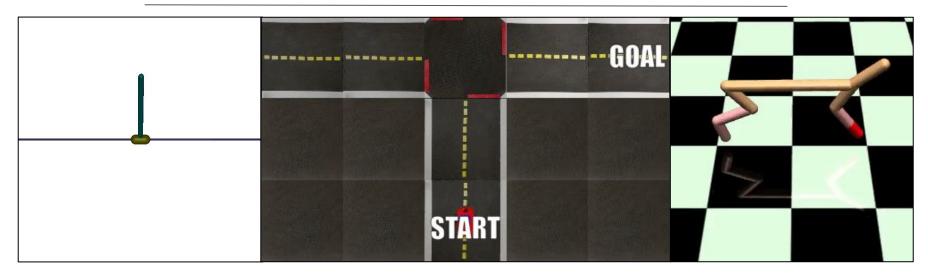
# Cautious Adaptation in RL (CARL)

- Approach (Model-Based):
  - Pretraining: probabilistic models capture state transition uncertainty<sup>1</sup>



 Adaptation: utilize uncertainty to safely adapt to new environment (planning cost function modification)

### **Environments Tested**



Cartpole (varying pole lengths)

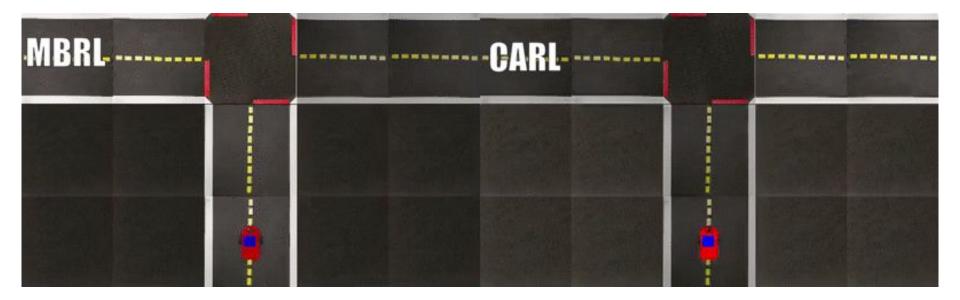
Duckietown (varying car width) Half Cheetah (varying disabled joint)

<sup>1</sup>Duckietown (Chevalier-Boisvert et al., 2018)

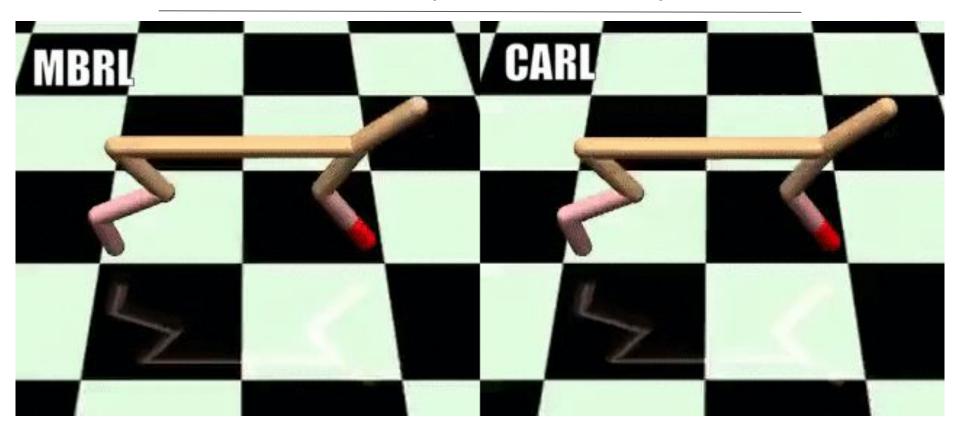
# Results (Cartpole)



# **Results (Duckietown Driving)**



# Results (Half-Cheetah)



# Short Summary

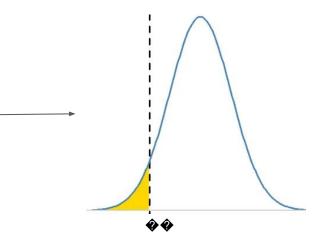
- Capture environment risk with prior experience
  - Probabilistic dynamics models
- Plan with risk in mind for safety-critical adaptation

# Outline

- Discussion of related works
- Detailed discussion of CARL methodology
- Further analysis of results
  - Comparison to other methods
  - Average reward, # of catastrophic events

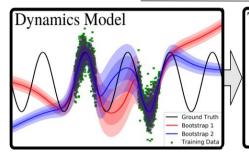
# **Related Work**

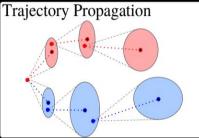
- Risk-Averse RL
  Conditional Value at Risk
- Model Based RL for Safety
  - Explicit safety constraints
- Capturing Uncertainty
  - Meta-learning

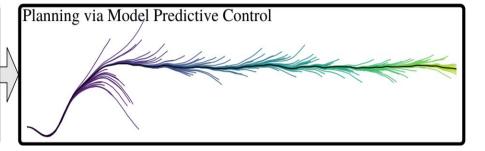


Risakaée lah (20 h7.) (23 h0) gh No rianpoore (2011/2) Be) k Bokken (20117)); Ostare & Etai (2012a) de la (2013); Etaila (2013); (20 h5); eCho wasal. Nagabandi et al (2018): Sæmundsson et al (2018); Finn et al (2017); (2015); Rejestigærati (20 h) (27 h); ani et al (2013)

# Model-based RL Preliminaries: PETS







Ensemble of Probabilistic Dynamics Models

0

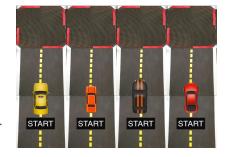
Trajectory sampling for candidate action selection

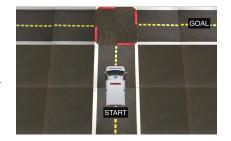
Sequence with highest action score is executed

Action Score 
$$\longrightarrow R(A) = \sum_i r_i/N$$
 over predicted trajectories with actions A \_\_\_\_\_ i Reward for i'th trajectory

# CARL for Safety Critical Adaptation

- PETS: Ensemble captures stochasticity in single environment
  - CARL: Captures uncertainty induced by variations across environments
- Pretraining: Train PETS
  - Randomly sample domain
  - Dynamics model captures uncertainty about state transitions, reward, and risk
- Adaptation: Unseen domain
  - Risk averse action selection





#### **Risk Averse Action Selection**

Case 1: Low Reward Risk-Aversion, CARL (Reward)

$$R(A) = \sum_{i} r_i / N \implies R_{\gamma}(A) = \sum_{i \in S_{\gamma}} r_i / |S_{\gamma}|$$

- Select actions that minimize worst-case outcomes
- $S_{\gamma}$ : worst  $\gamma$  percentile of predicted trajectories

### **Risk Averse Action Selection**

Case 2: Catastrophic State Risk-Aversion, CARL (State)

- Avoid catastrophic states directly
- Build state safety cost, *g*(*A*)
- Maximize:  $R_\lambda(A) = R(A) \lambda g(A)$
- Lagrangian relaxation of constraint minimizing probability of encountering states in a catastrophic set

#### **Risk Averse Action Selection**

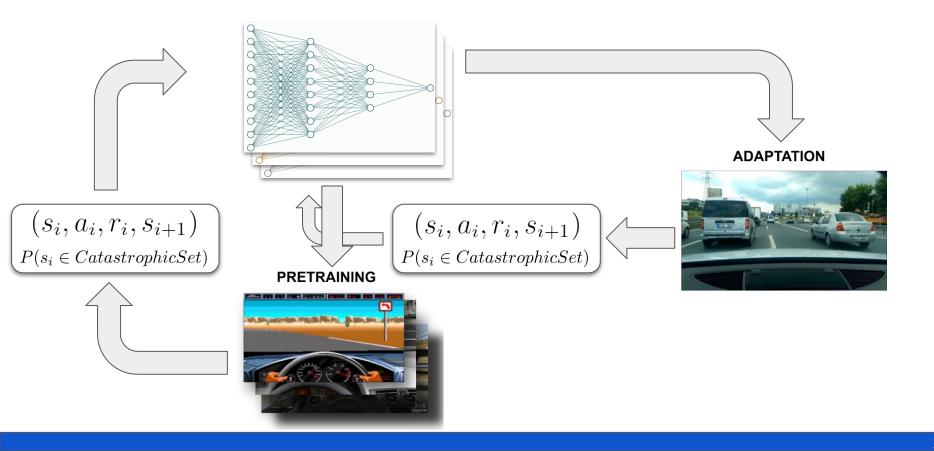
Case 2: Catastrophic State Risk-Aversion

P

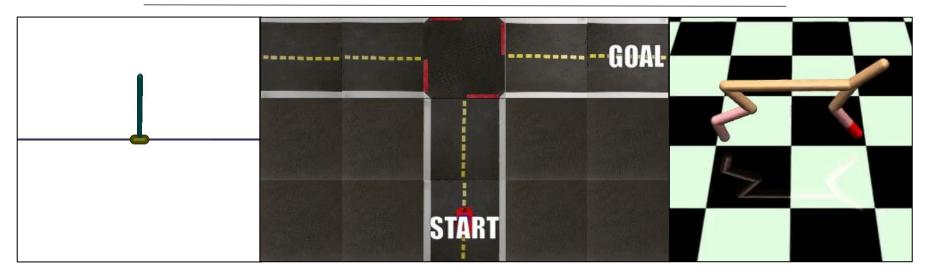
$$g(A) = \sum_{i=1}^{H} P(s_i \in \text{CatastrophicSet})$$
$$(s_i \in \text{CatastrophicSet}) = \frac{\sum_{j=1}^{|E|} \mathbb{1}[c_j(s_{i-1}, a_{i-1}) > \beta]}{|E|}$$

$$R_{\lambda}(A) = R(A) - \lambda g(A)$$

### **CARL System Overview**



### **Environments Tested**



Cartpole (varying pole lengths)

Duckietown (varying car width) Half Cheetah (varying disabled joint)

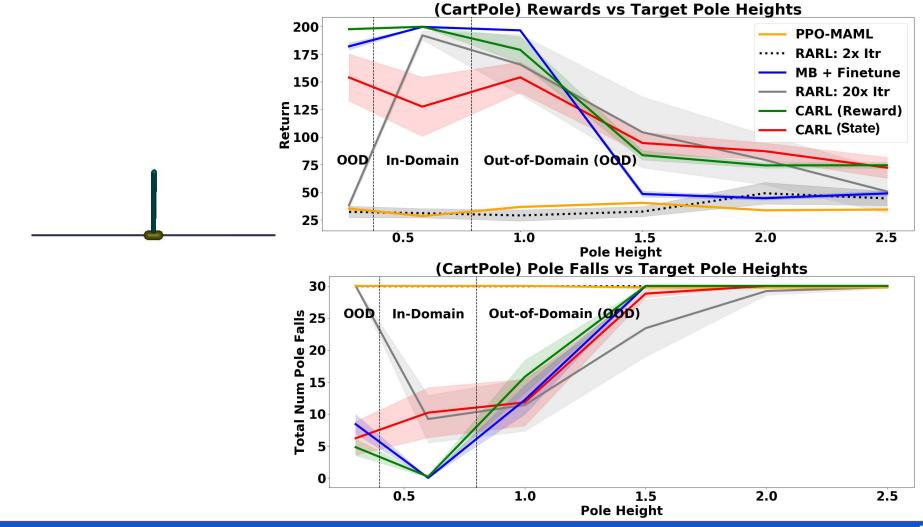
<sup>1</sup>Duckietown (Chevalier-Boisvert et al., 2018)

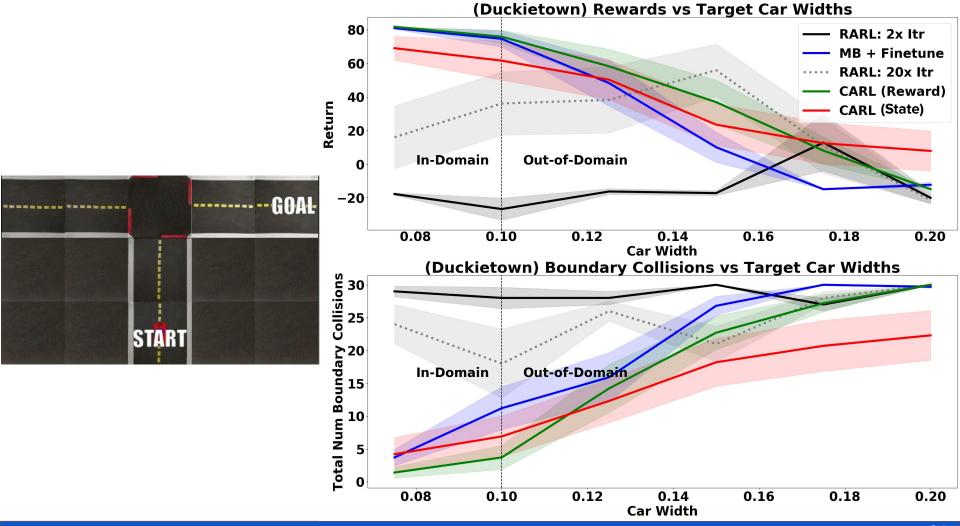
### **Experiment Setup**

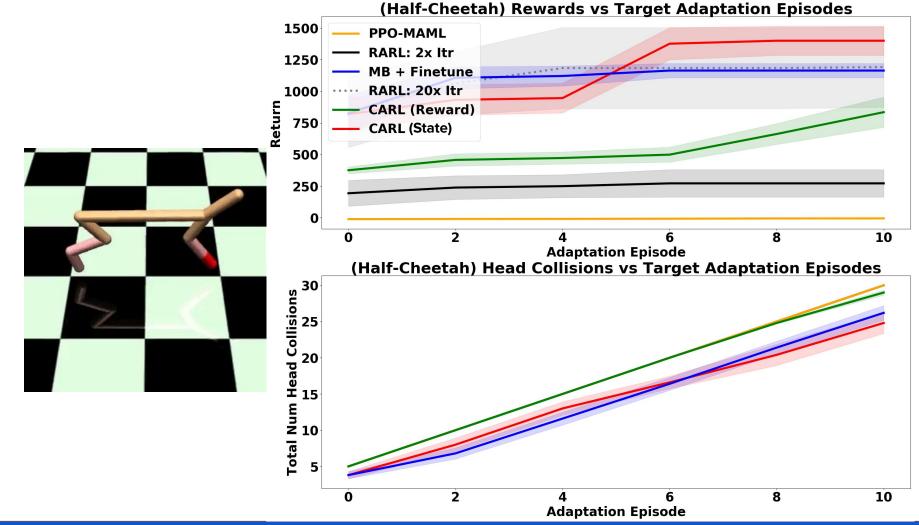
- MB + Finetune: PETS, finetune on test environment
- RARL: Robust Adversarial Reinforcement Learning<sup>1</sup>
- PPO-MAML: Model-Agnostic Meta Learning<sup>2</sup>
- CARL (Reward): Reward-based CARL
- CARL (State): State-based CARL

<sup>1</sup>(Pinto et al., 2017)

<sup>2</sup>(Finn et al., 2017)







# Summary

- Safety-Critical Adaptation (SCA)
  - Train on sandbox environments, adapt to safety-critical environments
- CARL and CARL (Reward)
  - Capture source uncertainty, perform risk-averse planning

Thank you!

